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1 . ABSTRACT

" Since the invention of the sound spectrograph in 1946 by Koenig, Dunn and Lacey.
spectrograms have been widely used for speech research. Over the last decade there has
been revived interest in the application of spectrogram reading toward continuous speech
recognition. Spectrogram reading involves interpreting the acoustic patterns in the image
to determine the spoken utterance. One must selectively attend to many different acoustic
cues, interpret their significance in light of other evidence, and make inferences based on
information from multiple sources. While early attempts at spectrogram reading met
with limited success (Klatt and Stevens, 1973; Lindblom and Svenssen, 1973; Svenssen,
1974), Zue, in a series of experiments intended to illustrate the richness of phonetic
information in the speech signal (Cole et al., 1980; Cole and Zue, 1980), demonstrated
that high performance phonetic labeling of a spectrogram could be oblained.

-In this thesis a formal evaluation of spectrogram reading was conducted in order to obtain
a better understanding of the process and to. evaluate the ability of spectrogram readers.
The research consisted of three main parts: an evaluation of spectrogram readers on
a constrained task, a comparison to listeners on the same task, and a formalization of
spectrogram-reading knowledge in a rule-based system. f

The performance of 5 spectrogram readers was assessed using speech from 299 talkers.
The readers identified stop consonants which were extracted from continuous speech and
presented in the immediate phonemic context. The task was designed so that lexiEal
and other higher sources of knowledge could not be used. The averaged identification
rate of the ranged across contexts, from 73-82% top choice, and 77-93% for the top two
choices. The performance of spectrogram readers was, on the average, 10% below that
of human listeners on the same task. Listeners had an overall identification rate that
ranged from 85 to 97%. The performance of readers is comparable to other spectrogram

-reading experiments reported in the literature, however the other studies have typically
evaluated a single subject on speech spoken by a small number of talkers.

Although researchers have suggested that the process can be described in terms of rules
JZue. 1981), few compilations of rules or strategies exist (Rothenberg, 1963; Fant, 1968,
Svenssen, 1974). In order to formalize the information used in spectrogram reading, a
system for identifying stop consonants was developed. A knowledge-based system was
chosen because the expression and use of the knowledge is explicit. The emphasis was
on capturing the acoustic descriptions and modeling the reasoning thought to be used
by human spectrogram readers. However, the implemention was much harder than had
been anticipated due to a variety of reasons. The most important is that there appears
to be much more happening in our visual system and in our thought processes than we
actually express, even when asked to explain our reasoning. Human are able to selectively El
pay attention to acoustic evidence, even in the presence of contradictory evidence. This []
ability is not well understood and is difficult to mimic. The performance of the system
was adequate: identification of 94 tokens that were both heard and read correctly was
88% top choice, and 96% top 2.
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S: A RICs AToN 01 .qS vafCe



Formalizing Knowledge used in Spectrogram Reading:
Acoustic and perceptual evidence from stops

by3 Lori Faith Lamel

Submitted to the Department of Electrical Engineering and
Computer Science on May 10, 1988 in partial fulfillment of the

requirements for the degree of Doctor of Philosophy

I Abstract

Since the invention of the sound spectrograph in 1946 by Koenig, Dunn and Lacey,I spectrograms have been widely used for speech research. Over the last decade there has
been revived interest in the application of spectrogram reading toward continuous speech
recognition. Spectrogram reading involves interpreting the acoustic patterns in the image
to determine the spoken utterance. One must selectively attend to many different acoustic
cues, interpret their significance in light of other evidence, and make inferences based on
information from multiple sources. While early attempts at spectrogram reading met
with limited success (Klatt and Stevens, 1973; Lindblom and Svenssen, 1973; Svenssen,
1974), Zue, in a series of experiments intended to illustrate the richness of phonetic
information in the speech signal (Cole et al., 1980; Cole and Zue, 1980), demonstrated
that high performance phonetic labeling of a spectrogram could be obtained.

In this. thesis a formal evaluation of spectrogram reading was conducted in order to obtain
a better understanding of the process and to evaluate the ability of spectrogram readers.
The research consisted of three main parts: an evaluation of spectrogram readers on
a constrained task, a comparison to listeners on the same task, and a formalization of

I spectrogram-reading knowledge in a rule-based system.

The performance of 5 spectrogram readers was assessed using speech from 299 talkers.
The readers identified stop consonants which were extracted from continuous speech and
presented in the immediate phonemic context. The task was designed so that lexical
and other higher sources of knowledge could not be used. The averaged identification
rate of the ranged across contexts, from 73-82% top choice, and 77-93% for the top two
choices. The performance of spectrogram readers was, on the average, 10% below that
of human listeners on the same task. Listeners had an overall identification rate that
ranged from 85 to 97%. The performance of readers is comparable to other spectrogram
reading experiments reported in the literature, however the other studies have typically
evaluated a single subject on speech spoken by a small number of talkers.

3 Although researchers have suggested that the process can be described in terms of rules
(Zue, 1981), few compilations of rules or strategies exist (Rothenberg, 1963; Fant, 1968,
Svenssen, 1974). In order to formalize the information used in spectrogram reading, a
system for identifying stop consonants was developed. A knowledge-based system was
chosen because the expression and use of the knowledge is explicit. The emphasis was
on capturing the acoustic descriptions and modeling the reasoning thought to be used
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by human spectrogram readers. However, the implemention was much harder than had
been anticipated due to a variety of reasons. The most important is that there appears
to be much more happening in our visual system and in our thought processes than we
actually express, even when asked to explain our reasoning. Human are able to selectively
pay attention to acoustic evidence, even in the presence of contradictory evidence. This
ability is not well understood, and is difficult to mimic. The performance of the system
was adequate: identification of 94 tokens that were both heard and read correctly was
88% top choice, and 96% top 2. 5
Thesis Supervisor: Dr. Victor W. Zue
Title: Principal Research Scientist
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I Chapter 1

I Spectrograms and Spectrogram Reading
U

While spectrograms have been used in speech analysis for many years, over the last

decade there has been revived interest in the application of spectrogram reading toward

continuous speech recognition. Spectrogram reading involves interpreting the acoustic3 patterns in the image to determine the spoken utterance. One must selectively attend to

many different acoustic cues, interpret their significance in light of other evidence, and

make inferences based on information from multiple sources. Early attempts at spectro-

gram reading met with limited success (Klatt and Stevens, 1973; Lindblom and Svenssen,

1973; Svenssen, 1974). In a series of experiments intended to illustrate the richness of

phonetic information in the speech signal (Cole et al., 1980; Cole and Zue, 1980), Zue
demonstrated that high performance phonetic labeling of a spectrogram could be ob-3 tained without the use of higher level knowledge sources such as syntax and semantics.

The phonetic transcription thus obtained was better than could be achieved by automatic3 speech recognition phonetic front ends (Klatt, 1977). It appears that the humans' ability

to handle partial specification, integrate multiple cues, and properly interpret conflicting3information contributes greatly to this high level of performance.

Recently, several attempts have been made to build automatic speech recognition sys-

Stems that model spectrogram reading directly (Carbonell et al., 1984; Johnson et al.,

1984; Stern et al., 1986). While the attempts have met with some success, they may be3 somewhat premature. The spectrogram reading experiments reported in the literature

have typically evaluated a single spectrogram reader on speech spoken by a small number

of talkers. High performance at spectrogram reading across a large number of talkers

has yet to be demonstrated. Although expert spectrogram readers have suggested that
the process can be described in terms of rules (Zue, 1981), few compilations of rules or

I1



Chapter 1. Spectrograms and Spectrogram Reading

strategies exist (Rothenberg, 1963; Fant, 1968, Svenssen, 1974). A better understand-

ing of spectrogram reading and a more extensive evaluation is needed before computer

implementations can be expected to meet with success.

In this thesis a rigorous investigation of spectrogram reading is described. The aim of

the investigation was to conduct a formal evaluation of spectrogram reading in order

to obtain a better understanding of the process. To do so, the performance of several

spectrogram readers was assessed using speech from a large number of talkers. The task

was designed so that lexical and other higher sources of knowledge could not be used.

The performance of the spectrogram readers was compared to that of human listeners

on the same constrained task. 3
Finally, an attempt was made to formalize the knowledge used in spectrogram reading

by incorporating it in a knowledge-based system. The knowledge is encoded in terms

of descriptions of acoustic events visible in the spectrogram, and in the relation of the

acoustic events to phonemes. The relations between phonemes and acoustic events are 3
expressed in a set of rules. Researchers have designed rule-based (or heuristic) speech

recognition systems (Lesser et al., 1975; Weinstein et al., 1975; Woods et al., 1976; Erman 3
and Lesser, 1980; Espy-Wilson, 1987); however, this formulation also attempts to model

the reasoning expressed by spectrogram readers. 3
The remainder of this chapter is as follows. The first section describes spectrograms and

how they are produced. Next spectrogram reading and its applications are discussed,

followed by the interpretation of a spectrogram of an unknown utterance in section 1.3.

Section 1.4 provides a summary ot previous spectrogram reading experiments. The final

section outlines the scope of this thesis.

I
1.1 Spectrograms U
Since the invention of the sound spectrograph (Koenig, Dunn, and Lacey, 1946), spectro-
grams have been used extensively by researchers in the speech community. Researchers 3
have used spectrograms to study the acoustic characteristics of speech sounds for a vari-

ety of applications, such as in the analysis of speech production and perception, in speech

synthesis, to aid in automatic speech recognition and to develop aids for the handicapped.

The spectrogram displays the energy distribution in the speech signal as a function of

2



3 Chapter 1. Spectrograms and Spectrogram Reading

both time and frequency. In the original implementation, an analog filter-bank was used

to perform the analysis. The average energy at the output of the filters is an approxima-

tion to the short-time Fourier transform (see Equation 1.1). Koenig et al. demonstrated

Ithe effects of varying the bandwidth of the analysis filter. Two bandwidths, 45 Hz and

300 Hz, have remained the most popular. The narrow-band spectrogram, produced with3 a filter bandwidth of 45 Hz, is able to resolve the individual harmonics in the spectrum,

and has been used primarily to measure fundamental frequency. The wide-band spec-3 trogram, produced with a 300 Hz bandwidth, provides a convenient visual display of the

acoustic characteristics of speech sounds. Since the wide-band spectrogram is produced

with a short time window, it provides good temporal resolution, enabling accurate loca-

tion of events in time (such as stop releases or the onset of voicing). In addition, formant

frequencies and the spectral energy in noise-like regions are generally easy to resolve.

The wide-band spectrogram has been used in this research.

1 While spectrograms are a convenient representation, some aspects of speech known to be

important, such as stress and intonation, are not well represented. In addition, the anal-

ysis makes no attempt to model the processing of the human auditory system. Since hu-

mans are the best interpreters of speech, it seems reasonable to assume that the auditory

processing may enhance important events in the acoustic signal, while de-emphasizing

others. Some researchers have developed algorithms and displays which attempt to model

the auditory processing (Searle et al., 1980; Lyon, 1984; Ghitza, 1988; Seneff, 1988;

I Shamma, 1988). With the popularity of digital computers the spectrogram has become

more versatile, and some of its drawbacks have been addressed. Today, many laboratories3 have developed facilities for producing digital spectrograms, with quality comparable to

the analog spectrograms. An advantage of digital processing is that it is easy to modify

the analysis and display parameters. Kay Elemetrics Corp. has a commercially avail-

able digital spectrograph machine, the Kay DSP Sonograph. The DSP Sonograph also

provides the capability to display other parameters such as the waveform and energy

I envelope, linear prediction analysis, and spectral slices at a given point in time. A spec-

trogram of an unknown utterance, produced using a Voice-Print, model 4691A, is shown

in Figure 1.1(a). Part (b) of Figure 1.1 shows the same utterance produced by the

DSP Sonograph, model 5500. Figure 1.2 shows a typical spectrographic display used at

MIT, and in this thesis, for the same utterance. It was produced using the software tool

Spire (Shipman, 1982; Cyphers, 1985). The spectrogram was computed by taking the
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Figure 1.1: Example spectrogram (a) produced by the Voiceprint, (b) produced by the I
Kay DSP Sonograph.
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3 Chapter 1. Spectrograms and Spectrogram Reading

3 short-time Fourier transform (STFT) of the speech signal

00Xn(ew) = E w[n -ml ~ - j ' (1.1)

3 where x[m] is the digitized speech signal, n is the time index, and w is a Hamming window

of 6.7 ms. The STFT is computed every millisecond and sampled at 128 frequency points

over the frequency range 0 to 8 kHz. The amplitude is then nonlinearly mapped into a

25 dB grey scale. The spectrogram is augmented by three parameters: low frequency

energy (LFE), total energy (TE) and center-clipped zero crossing rate (ZCR), along with

the original waveform display. These parameters are useful to the spectrogram reader

in identifying phonemes, particularly in regions where the acoustic energy is weak. For3 example, some weak fricatives are not apparent on the spectrogram and can only be pos-

tulated by the presence of a high ZCR. Researchers may augment the spectrogram with3 other parameters. Vaissiere (1983) has found that the fundamental frequency contour

aids in interpreting spectrograms of French sentences.I
1.2 Spectrogram readingI
Some humans have learned to interpret the visual acoustic patterns in the spectrogram

Sso as to determine the identity of the spoken phonemes or words, a process known as

spectrogram reading. In addition to providing a convenient mechanism for studying3 acoustic-phonetics (the relationship between phonemes and their acoustic correlates),

spectrogram reading provides an opportunity to separate the acoustic characteristics of

sounds from other sources of information, such as lexical, syntactic and semantic. It is

difficult to assess the role of the different knowledge sources used by listeners interpret-

ing continuous speech. That lexical, semantic and pragmatic knowledge are important3 is demonstrated by the ability of listeners to understand speech even under distortion.

Humans are also capable of decoding the intended message in the presence of speech er-3 rors (Nickerson and Huggins, 1977). The importance of language-specific knowledge was

demonstrated by experiments in which phoneticians were asked to transcribe utterances

from both familiar and unfamiliar languages (Shockey and Reddy, 1975). The phoneti-

cians were typically less consistent at transcribing unfamiliar languages, suggesting that3 language-specific knowledge is important for phonetic decoding.

1



Chapter 1. Spectrograms and Spectrogram Reading

It can be argued that in reading spectrograms one may be able to use fewer sources of

knowledge than one can in listening. Spectrogram readers may be able to rely on their

knowledge of the acoustic characteristics of speech sounds, how these characteristics

change due to coarticulation, and on phonotactics, the allowable sequences of phonemes

in the language. It appears that the spoken phonemes may be labeled in the spectrogram

without considering word hypotheses. The claim is not that one cannot or should not try

to read words or phrases directly in the spectrogram, but that it is possible to interpret

the spectrogram without reading the words. The aim of Potter, Kopp, and Kopp (1947)

was to assess the feasibility of communicating via spectrograms. Other researchers have

also investigated reading words or syllables directly (House et al., 1968; Greene et al.,

1984). This thesis work has focused on relating the visual acoustic patterns in the wide-

band spectrogram to the underlying phonetic representation.

The earliest research in spectrogram reading was undertaken by Potter, Kopp and Kopp

at Bell Laboratories in 1943.1 As noted in the book Visible Speech (1947) they first

presented evidence of readability:

Different words have a different appearance, an essential requirement if they

are to be told apart. But the same words spoken by different individuals have

a similar appearance, also an essential requirement if the symbols are to be

of practical use. [p.5]

The purpose of their research was to develop a speech communication aid for the deaf.

Spectrogram reading was studied along with phonetic principles and the relationship

of articulatory movements to speech patterns. The studies were reported in Visible

Speech. The book provides a comprehensive summary of the acoustic/visual properties

of speech sounds, and to date remains the only published book on this topic. Rothenberg

(1963) wrote a manual for interpreting spectrograms and Fant (1968) provides a guide

to phonetically interpreting spectrograms.

Much of the pioneering work in acoustic-phonetics (Lehiste, 1967) focused on small

units of speech, typically simple syllables and words. The analysis of consonant-vowel-

consonant (CVC) or VCV sequences provides valuable insight into the canonical acoustic

'A completely independent study is described in a book by Solzhenitsyn, The First Circle (1968).
In this book a scientific prisoner, Lev Rubin, learned to read speech patterns in a secret project under
Stalin. An example of identifying an unknown speech signal is given on page 189. The extent to which
this account is true is unknown.
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3 Chapter 1. Spectrograms and Spectrogram Reading

characteristics of speech sounds. These studies also defined some of the acoustic corre-
lates of distinctive features (Jacobson et al., 1952). For example, the distinction between
voiced and voiceless sounds in English is often cued primarily by duration rather than

vocal-fold vibration (Denes, 1955; Lisker, 1957, 1978; Klatt, 1976; Umeda, 1975, 1977).

The acoustic characteristics of speech sounds can also be related to their articulation.

Formant locations for vowels and the spectral energy present in consonants can be pre-

dicted by acoustic-tube models of vocal tract configurations (Fant, 1960).

I Despite the early work of Potter et al., and the role of spectrograms in speech analysis,

the prevailing opinion was that speech spectrograms were extremely difficult to read3 (Liberman et al. 1967,1968). While Fant (1962) argued for the utility of reading speech

spectrograms, he also noted that no researchers claimed to be able to read them fluently.3 A common assumption was that the coarticulation between sounds was such that it would

obscure the identity of incividual phonemes..Some researchers believed that the acoustic3 signal, by itself, does not provide enough constraint to uniquely decode the utterance, but

that higher-level constraints obtained from syntax and semantics must be used (Newell

et al., 1971; Reddy, 1976). Studying spectrograms of continuous speech may help us to

better understand acoustic-phonetics and the phonological variation found in continuous

speech. For example, it is well known that the acoustic characteristics of the words "did"3and "you" spoken in isolation are quite different from their common pronunciation as

[dirul in fluent speech. Only by directly studying the acoustic characteristics of fluent

speech can such phonological variation be understood.

Spectrogram reading has contributed to our understanding of acoustic-phonetics and

indirectly contributed to speech synthesis and recognition. Real-time spectrograms and

other devices have also been used to correct speech production problems in hearing-3 impaired subjects (Stewart et al., 1976; Houde and Braeges, 1983). Spectrogram reading

has also had two direct applications. Reading spectrograms has been proposed as an3 alternative method of communication for the deaf, and as a potential aid for the hearing

impaired (Potter et al., 1947; House et al., 1968, Nickerson, 1978; Cole and Zue, 1980).

Recently researchers have attempted to build automatic speech recognition systems that

explicitly model spectrogram reading (Johanssen et al., 1983; Carbonell et al., 1984;
Johnson et al., 1984; Stern, 1986; Stern et al., 1986).
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1.3 An example of interpreting a spectrogram

Reading spectrograms involves the application of a variety of constraints to the identiti-

cation problem. These include knowledge of the acoustic correlates of speech sounds and

their contextual variation, and phonotactic constraints. The skill also requires the ability

to integrate multiple cues and to rely on secondary cues when the primary ones are not 3
present.

Protocol analysis of the spectrogram reading process (Cole and Zue, 1980) shows there U
to be two stages, roughly corresponding to segmentation and labeling. Segmenting the

speech involves placing boundaries to mark acoustic change. Boundaries are usually i
marked where there is a large spectral discontinuity. However, often the only cue to

a vowel-semivowel transition is the amount of gradual formant motion. Other segment 3
boundaries, such as for geminate consonants, may be cued only by duration. Experi-

enced spectrogram readers often do not explicitly mark boundaries, but rather implicitly 3
denote them via the labeling. Generally the easy segments, those whose spectral patterns

are distinct and relatively context invariant, are labeled first. Then, with successive re-

visions, incorporating the local context and finer acoustic cues, the remaining segments

are labeled. Phonotactic constraints may also aid in the process. Although there may

be feedback in the process (a partial identification of the segment may help in further

segmentation), often the stages may be separated.

In order to illustrate the process of spectrogram reading and to relate some of the prop-

erties of speech sounds to their visual patterns in the speech spectrogram, I will walk

through the identification of the phonemes in the spectrogram in Figure 1.2. For ease
of discussion, the phonemes are interpreted from left-to-right. Throughout the exam-

ple the acoustic characteristics of the speech sounds are related to their articulation.

For a comprehensive analysis of the relationships see Fant (1960) and Flanagan (1972).

Spectrogram reading brings together information from a variety of sources in forming

phonetic labels. I intend for this illustration to give the reader a flavor for the process;

this example is not meant to be comprehensive. 3
The utterance begins with a stop release at time t=0.05 sec. The voice-onset time

(VOT) of the stop is quite long, about 90 ms. The long VOT and the presence of I
aspiration indicate that the stop is voiceless. Stops are produced by forming a complete

8
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I Figure 1.2: Example spectrogram produced using Spire. The display also includes low
frequency energy (Energy - 125 Hz to 750 Hz), total energy, and zero crossing rate
contours. The waveform is shown below the spectrogram.

3 constriction in the vocal tract, and abruptly releasing the constriction. Only the cavities

in front of the constriction are initially excited; thus the spectral characteristics of the1 release provide information about the place of articulation of the stop (Fant, 1960). The

spectral distribution of energy at the release has two major concentrations of energy. The

lower concentration is centered at about 1600 Hz, approximately the same frequency as

the second formant (F 2) of the next vowel. The higher concentration is at almost three

times the lower frequency. This bimodal frequency distribution is typical of velar stops,
where the energy concentrations correspond to the first two resonances of the quarter-
wavelength acoustic cavity in front of the constriction. Thus, the first segment is a /k/.

The next segment (from t=0.14 sec to t=0.25 sec) is a vowel with a high F1 and a low3 F2 . Based on the formant locations the vowel has the distinctive features [+ low] and

1



Chapter 1. Spectrograms and Spectrogram Reading m

[+ back] and is probably an /a/ or /0/ (Jacobson et al., 1952). 1
Following the vowel is a nasal (from t=0.25 sec to t=0.3 sec). The presence of the

nasal is primarily indicated by the abrupt spectral change at the end of the vowel: the 3
disappearance of the higher formants, and the appearance of the low nasal resonance,

at about 250 Hz (Fujimura, 1962; Mermelstein, 1977). In fact, the nasal resonance

actually extends back into the preceding vowel: this is evidence of nasalization of the I
vowel (Fujimura, 1960). The place of articulation of the nasal is not obvious. In this case
the candidates are ordered by the lack, rather than the presence of acoustic evidence.

The third formant is rising from the vowel into the nasal, indicating that the nasal is
probably not labial or velar. However, if the nasal is alveolar, then F2 should to rise 3
towards a locus near 1800 Hz (Delattre et al., 1955; Halle et al., 1957), but there does
not seem to be much motion in F 2. If the nasal is labial, F2 should be falling into the 3
nasal and there may be a lowering of the spectral energy distribution at the beginning of
the following fricative. Perturbation theory (Fant, 1960) predicts both of these effects as

a consequ !nce of forming a constriction at the lips. To label the segment more precisely I
than simply "nasal," I would rank the nasals in the order /n/,/rj/,/m/.

Following the nasal is a strident fricative, indicated by the strong noise-like energy at
high frequencies. The high total energy and zero crossing rate provide supporting evi-

dence. Strident fricatives are produced by forming a narrow constriction with the tongue

in the oral part of the vocal tract such that turbulent noise is generated at an obstruction

anterior to the constriction. The noise source excites the cavity in front of the constric- I
tion. (The resonant frequency of the cavity is inversely proportional to its length.) The

resonances of the cavities behind the constriction are cancelled by zeros (Fant, 1960). In 3
this case, the energy is primarily above 4 kHz, indicating that the fricative is alveolar,
and therefore an /s/ or a /z/. The duration of the fricative is about 80 ms, which is 3
not particularly short or long. The lack of voicing cues, such as vertical striations in the
noise or periodicity in the waveform, tend to favor /s/ as the top choice. 3
The next segment is a short vowel; it is only about five pitch periods long, suggesting
that it is [- tense] and not stressed. The first and second formants are further apart in 3
frequency than the first vowel, indicating that this vowel is more fronted, an /E/ or an
//. 1
The second and third formants come together at the end of the vowel (t= 0.43) in what

110 I
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is referred to as a velar pinch. This formant motion is typical in a front vowel next to a

velar. Following the vowel is an interval of silence, corresponding to a stop closure. The

release of the stop is at t=0.5 sec. The characteristics of the stop release, compact in

frequency and located near F2 of the next sonorant region, support the evidence in the

preceding vowel that the place of articulation is velar. The stop also has what is known

Sas a double burst in time, another indicator for a velar place of articulation (Fischer-

Jorgenson, 1954; Keating et al., 1980). In fact, the first stop in the utterance also has3 a double (maybe even triple) burst. The cues for voicing of the stop are mixed. The

VOT of the stop is about 50 ms, compatible with both a /9/ and a /k/. Conflicting are

the lack of prevoicing in the closure (which would support a voiced stop) and the lack of

aspiration in the release (which would favor a voiceless stop). The lack of aspiration can

also be seen by comparing the zero crossing rate in the two stops. The stop is either a

/g/ or an unaspirated /k/.

3 The stop release at t=0.5 sec is lower in frequency than observed for the first velar stop.

This is because the next segment is rounded, a /w/. The presence of the /w/ is indicated

by the low F1 and F2 at the beginning of the voiced region, and the rising formant

motion into the vowel. (An /1/ may be a second choice, as /1/ also has a low first and

second formant. A variety of cues lead me to favor /w/. These include the especially low3 frequency of F2 , the low frequency location of the burst, and the lack of higher frequency

energy in the release often present with /1/.) Stops in semivowel clusters typically have3 longer VOT values than singleton stops (Klatt, 1975; Zue, 1976), suggesting that this

stop is a /9/. However, the cluster /gw/ is relatively rare in English and the total energy

* contour indicates that the final syllable of the utterance is less stressed than the initial

one. Thus an unstressed, unaspirated /kw/ cluster is also possible.

3The acoustic characteristics of the final vocalic portion are not particularly clear. The

first formant is neither high nor low in frequency and the second formant location is3 affected by the preceding /w/. At its midpoint, roughly t=0.62 sec, the vowel looks to

be relatively neutral, probably /A/ or /c/. The end of the vowel appears nasalized (the

bandwidth of the first formant is large) and there is a nasal murmur from t=0.65 sec to

t=0.7 sec. The nasal resonance also extends back into the preceding vowel. The place of

articulation of the nasal is difficult to determine as the formants in the preceding vowel

fade away before providing any clear indications. However, F 2 in the preceding segment

is rising more than expected if the nasal were labial, and less than would be expected for
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Chapter 1. Spectrograms and Spectrogram Reading 3
a velar (compare the F2 motion to the vowel at t=0.4 sec). F2 may be heading to a locus

near 1800 Hz, indicating alveolar. There is a period of silence lasting approximately 50

ms followed by an /s/ at t=0.75 sec. A /z/ is ruled out because the nasal murmur should

be longer if the nasal were followed by a voiced consonant in the same syllable (Mal~cot, 3
1960; Raphael et al., 1975; Zue and Sia, 1982). The silence may be due to articulatory

timing or may be a stop closure. If it is a stop, it is homorganic (has the same place of 3
articulation as) with the nasal. The lack of spectral change in the /s/ suggests that the

preceding nasal is most likely an /n/. 3
The phoneme string thus proposed is U

k a n s c k W A n-(t) S
0 z -9  --

m l1 -k

1) im-(p) 3
where, being conservative, the phonemes below the dashed line are less likely, but have

not been definitively ruled out. From this transcription it is easy to obtain the word

proposal "consequence." Tn fact, in a 20,000 word lexicon (Webster, 1964) it is the only

word matching the transcription.

I have used this example to demonstrate that the process of spectrogram reading entails

identifying acoustic characteristics of phones and using a combination of constraints.

Typically a "broad class" phoneme proposal, such as nasal, stop or fricative, is refined

using more detailed evidence. Some segments, such as the /s/ and /k/, are identified

by recognition of their canonical characteristics. An example )f contextual variation is

illustrated by the two /k/'s in the utterance. Although both precede a sonorant that is I
[+ back], the second /k/ has a somewhat lower burst frequency since it is also rounded.

The two /k/'s also exhibit differences due to stress.

1.4 Summary of spectrogram reading experiments I

After the pioneering work in 1947, spectrogram reading was not actively pursued until the I
early 1970's, spurred by the interest in automatic speech recognition. Around this time

1
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exploratory studies were performed (Klatt and Stevens, 1973; Lindblom and Svenssen,

i973; Svensson, 1974), with somewhat discouraging results. In a series of experiments

in 1978 and 1979 (Zue and Cole, 1979; Cole et al., 1980; Cole and Zue, 1980), Zue

demonstrated that spectrograms of continuous speech could be phonetically labeled with

accuracy better than 80%. A summary of these and subsequent spectrogram reading3 experiments is given in Table 1.1. Blanks are left in the. table when the relevant data

were not given in the reference. While the spectrogram reading experience of many of

the subjects was unspecified, most subjects were researchers in speech or linguistics and

familiar with acoustic phonetics. The accuracy reported in the table is for the top choice

U phoneme unless otherwise indicated.

As can be seen in Table 1.1 there have been a variety of spectrogram reading experiments.

* Some of the experiments addressed the ability of subjects to read words or syllables di-

rectly in the spectrogram (Potter et al., 1947; House et al., 1968; Pisoni et al., 1983;

* Greene et al, 1984; Daly, 1987). Others attempted to assess the ability to phonetically

label the spectrogram (Klatt and Stevens, 1973; Svenssen, 1974; Cole et al., 1980, John-

son et al., 1984; Lonchamp et al., 1985). The subjects' performance at phonetic labeling

ranges from a low of near 30% to a high of around 80%. Some of this variation may be
attributed to the test conditions. For example, the subjects in the Svensson (1974) study

were instructed to provide only one label per segment; in other experiments multiple

labels were permitted. In order to maximize the likelihood that the labeling was based

on acoustic-phonetic evidence and to minimize the possibility of hypothesizing words,

Klatt and Stevens slid a 300 ms window across the sentence in a single left-to-right pass.3 However, the window aiso prevented the readers from using utterance-based "normaliza-

tion," such as for fricative energy or formant locations. In the other studies, the subjects

were able to see the entire spectrogram at once. The conditions of the experiments vary

so much with regard to the test data, test conditions, and subject experience that it is

difficult to compare the results. With such a range of experiments and results, it is no

wonder that the possibility of reading spectrograms has been questioned (Liberman et

al., 1968).

The experiments of Cole et al. (1980) were the first to indicate that a highly trained

expert could phonetically label a spectrogram of an unknown utterance with an accuracy

better than 80%. The labels produced by Zue were compared to the phonetic transcrip-
tions of three trained phoneticians: one of the labels provided by Zue (at most three

13I
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Table 1.1: Comparison of previous spectrogram reading experiments.
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Chapter 1. Spectrograms and Spectrogram Reading

choices were supplied) agreed with at least one of the transcribers over 85% of the time.
-I Zue's performance is particularly encouraging in light of the observation that the agree-

ment as to the correct answer among the three phoneticians was also 85%. However, a

question remained as to whether or not the skill of spectrogram reading could be taught.

Would all speech researchers interested in spectrogram reading have to invest 2000 hours,

as Zue did, to become proficient at the task? Cole and Zue (1980) report an experiment in

which Zue, as part of a course on speech production and perception at Boston University3 in 1978, attempted to teach a group of five graduate students how to read spectrograms

(see Table 1.1). A year later, Seneff (1979), serving as her own subject, conducted an

experiment in which she labeled spectrograms of 49 sentences. After each spectrogram

was read, Seneff discussed the spectrogram with Zue. Seneff was encouraged that her

performance, with regard to both accuracy and speed, improved rapidly. More recently,

a number of spectrogram reading courses have been taught and several researchers have

become proficient at this task. The growing interest in spectrogram reading is apparent

by the popularity of the Speech Spectrogram Reading courses taught at MIT over the last
five years. The success of these courses provides evidence that the knowledge used in

* spectrogram reading can be transferred.

The results of some of the more recent spectrogram reading experiments are quite encour-3 aging (Cole and Zue, 1980; Johnson, 1984; Lonchamp, 1985). These results suggest that

the accuracies with which spectrograms in different languages are phonetically labeled,

by a subject familiar with that language, may be comparable. The studies indicate that
trained spectrogram readers can phonetically label an unknown utterance with better3 accuracy than existing phonetic speech recognition systems (Klatt, 1977). However, one

should be cautious in interpreting these results, as the tests were quite limited and and

the conditions varied. The data on which the subjects were tested ranged from simple

CV-syllables to continuously spoken sentences. The amount of test data was generally
small, as was the number of subjects. The limited testing is not surprising, as the evalua-

tion is rather time-consuming and often requires highly trained subjects. The experience
of the subjects also varied greatly, from naive to experienced. In addition, in almost all of3 the studies, speech from only a small number of talkers, typically 1 to 5 male talkers, was

used. (The talkers also tended to be speech researchers at the laboratory where the ex-3 periment was conducted.) The small scale of the experiments and the lack of consistency

among them indicates the need for a more extensive evaluation.

1
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1.5 Scope of the thesis

While human listeners are the best speech recognizers, some human viewers have learned

the skill of interpreting the patterns present in spectrograms to determine the identity

of the spoken phonemes. The phonetic transcription thus obtained is as good or better

than can presently be achieved by automatic speech recognition phonetic front ends

(Klatt, 1977; Zue and Cole, 1979; Cole et al., 1980). Researchers have learned much

about acoustic-phonetics from extensive studies of speech spectrograms and have been

incorporating knowledge and features derived from the study of spectrograms in speech

recognition systems (see, for example, Cole et al., 1982; Demichelis et al., 1983; Glass,

1984; Chen, 1985; Espy-Wilson, 1987). Some researchers have attempted to develop

expert systems which attempt to mimic spectrogram reading (Johanssen et al., 1983;

Johnson et al., 1984; Carbonell et al., 1986; Stern, 1986; Stern et al., 1986).

It is evident from the spectrogram reading experiments that the acoustic signal is rich in

phonetic information. The phonetic segments in the utterance are located and labeled

from the visual representation of the speech signal. Several sources of knowledge are used

to interpret a spectrogram. These include knowledge of the characteristic visual patterns

of speech sounds, how these patterns are modified due to coarticulation, and phonotactic

constraints. Many of the observed acoustic correlates of speech sounds can be predicted

by articulatory models and some of the contextual variations can be explained using

perturbation theory and simple acoustic-tube models (Fant, 1960). In this thesis I am

concerned with relating the visual patterns in the spectrogram to phonetic units without

the use of higher-level knowledge, such as lexical, syntactic or semantic knowledge.

While the results of previous spectrogram reading experiments are quite encouraging it

must be kept in mind that the evaluations were on fairly small test sets, spoken by a

small number of talkers. It is not apparent from the reported experiments whether or not

accurate phonetic labeling of speech from many different talkers can be obtained. Thus,

one of the aims of this thesis has been to systematically evaluate experienced spectrogram

readers on speech from a large number of speakers and in a variety of local phonemic

contexts. The results of spectrogram reading experiments on a task that does not permit

the use of higher-level knowledge are presented in Chapter 4.

How should the ability of humans to phonetically label spectrograms be assessed? A

logical comparison is with trained phoneticians, as reported by Cole et al. (1980). Two
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problems associated with such an approach, namely, inter-transcriber consistency and
the use of higher-level knowledge, were discussed in the previous section. I have opted to
evaluate naive listeners on the same task as the spectrogram readers. The listeners are
"naive" in the sense that they are not trained phoneticians, but being speaker/hearers
they have had years of experience at listening. The listening experiments serve both3 as a base-..ae performance measure and to determine whether or not factors thought
to be important in spectrogram reading are also important to listeners. (Spectrogram
reading alone does not indicate whether or not the acoustic patterns and rules used by

spectrogram readers bear any correspondence to the information used by listeners.) In
order to minimize the use of higher-level knowledge, listeners heard portions of speech

extracted from continuous sentences. The listening experiments, presented in Chapter 3,
vary factors such as stress, syllable position and phonetic context.

The evidence, obtained from both spectrogram reading experiments and from teaching
spectrogram reading, indicates that the process can be modeled with a set of rules.
Formalizing spectrogram reading entails refining the language (terminology) that is used
to describe acoustic events on the spectrogram, and selecting a set of relevant acoustic

events that can be used to distinguish phones. Rules which combine these acoustic
attributes into phones must also be developed. The rules need to account for contextual
variation (coarticulation), and partial and/or conflicting evidence, and to be able to

propose multiple hypotheses. One way to assess how well the knowledge used by experts
has been captured in the rules is by embedding the rules in a computer program. The
knowledge may be explicitly incorporated in a knowledge-based system. The degree
to which the knowledge has been formalized can be judged by the performance of the
system, the types of errors made by the system, and the reasoning used.

Building a system to label entire, unrestricted utterances is beyond the scope of this
thesis. I hope, however, to take a step in that direction. The specific task investigated
in this thesis is the identification of stop consonants extracted from continuous speech.
The stops occur in a variety of contexts, including both syllable-initial and syllable-non-
initial position, and in clusters with nasals, semivowels, and fricatives. The contexts were
chosen to test the importance of knowledge sources thought to be used in spectrogram
reading. A partial segmentation of the speech is provided. Restricting the information to

the segment to be identified and its immediate neighbors greatly reduces the complexity
of the problem while retaining much of the contextual influences in American English.
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The remainder of this thesis is organized as follows. In Chapter 2 the design of the lis-

tening and spectrogram reading experiments is discussed. Examples of relevant acoustic

characteristics are also provided. Chapters 3 and 4 present the results of the listening

and spectrogram reading experiments, respectively. The acoustic attributes, rules, and

knowledge representation used in the knowledge-based system are presented in Chapter 5.

Included in Chapter 5 is an evaluation of the system. A final discussion and suggestions

for future research are given in Chapter 6.
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3 Chapter 2

n Task and Database Descriptions
U

This chapter provides a description of the tasks used to evaluate human listeners, spectro-

gram readers, and the knowledge-based implementation. Factors such as stress, syllable

position and phonetic context were varied in order to determine their effects on stop

identification. The test tokens were extracted from continuous speech spoken by many

talkers. The next section provides an overview of the organization of the experiments.

More detailed discussions of each task are given in section 2.2. The final section specifies

details of the token selection and distributional properties of the test data.

I 2.1 Organization of the experiments

The experiments described in Chapters 3 and 4 assessed the subjects' ability to identify
stop consonants presented in only their immediately surrounding phonetic context. The

tokens, extracted from continuous speech, consisted of a stop or a two-consonant sequence

containing a stop, and a single vowel on each side. The experiments were designed to

explore whether sufficient acoustic information was present in the extracted waveforms
to identify the stops. There are several reasons why stop consonant identification was

n selected for this experiment. As a class of sounds the stop consonants have been exten-

sively studied. Their articulation is complicated, consisting of dynamic characteristics3 which vary depending on context (e.g., Fant, 1960; Fant, 1973). Stops are also among

the most frequently occurring sounds in English, appearing both alone and in a variety

of consonant clusters. They account for roughly 20% of all phonemes (Denes, 1963). A

variety of studies on the perception of stops in isolated CV syllables have shown an iden-
tification performance in the range of 97% to 99%(Nye and Gaitenby, 1973; Pisoni and
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Hunnicutt, 1980). In syllable-final position the identification rates drop by 2-5%(House

et al., 1965; Nye and Gaitenby, 1973). I
Subjects identified stop consonants in five different contexts:

Task 1: syllable-initial singleton stops

Task 2: syllable-initial stops preceded by /s/ or/z/

Task 3: syllable-initial stops in semivowel clusters and the affricates

Task 4: non-syllable-initial singleton stops

Task 5: non-syllable-initial stops in homorganic nasal clusters

The first task assesses the subjects' ability to identify singleton stop consonants in

syllable-initial position. After establishing this baseline performance, the effects of in-

tervening consonants and syllable position on the subjects' decision can be determined.

Acoustic studies have shown that the acoustic characteristics of stops in syllable-initial

consonant clusters change from the canonical characteristics of singleton stops (Lehiste,

1962; Zue, 1976). The remaining tasks evaluate the subjects' ability to identify stop

consonants in clusters with other consonants and in non-syllable-initial position.

The five tasks were combined into experiments as shown in Figure 2.1. Experiment I corn- I
pared tasks 1 and 2 assessing the effect of alveolar strong fricatives on the identification

of syllable-initial stops. In Experiment II, comparing tasks 1 and 3, the question raised

was whether the semivowels alter the identification of the stop consonants. Experiment

III examined the extent to which syllable position affects stop identitication. Nye and

Gaitenby (1973) found syllable-final stops to be less well articulated than syllable-initial

stops. Experiment IV investigated the influence of homorganic nasals on the identifica-

tion of non-initial stops. The next section describes the tasks in more detail. I
2.2 Description of the tasks I
In the first task, subjects identified syllable-initial singleton stop consonants. Syllable-

initial stops generally are well-articulated and exhibit their canonical characteristics

(Halle et al., 1957; Fant, 1973; Zue, 1976). In English, a primary cue for voicing in

syllable-initial singleton stops is the voice-onset-time (VOT) (Lisker and Abramson,

1964). Other cues include the presence/absence of aspiration after the burst and prevoic-

ing during the closure interval. Lisker (1978) catalogues 16 acoustic features that may
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I
I
I

I Cluster

syllable-initial I syllable-initial stops 2
I / singleton stopsJ ~preceded by/s/or/z

Syllable (syllable-initial stops
Position in semivowel clusters 3Iand affricates

non-initial" IV non-initial homorganic 5
,singleton stopsJ • nasalstop clusters

non-initial stops include both syllable-final and
ambisyllabic

Figure 2.1: Experimental design. Task 1: syllable-initial singleton stops; Task 2: alveolar
strong fricatives (Is, z/) preceding syllable-initial stops where the fricative may or may
not be in the same syllable as the stop; Task 3: syllable-initial stops in clusters withI semivowels /l,r,w/ and the affricates, /J'/; Task 4: non-syllable-initial singleton stops;
Task 5: non-syllable-initial nasal-stop sequences. The roman numerals IIIIII, and IV
denote the experiment number.

2
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cue the voicing distinction. The acoustic characteristics of the stop release provide infor-

mation about the place of articulation as do the formant motions into the surrounding

vowels. This task set a baseline performance measure for the ensuing tasks, and explored

whether or not the immediate phonetic context was sufficient for identification of the

stop.

!S

J 1**

22

"~M (swam&c) TtM ("M&)

/0 9o/ / oko /
Figure 2.2: Spectrograms of /ogo/ and /oko/.

Spectrograms of a syllable-initial /g/ and /k/ are shown in Figure 2.2. The VOT of the
/g/ (about 20 ms) is shorter than the VOT of the /k/ (about 60 ms). The prevoicing

throughout closure of the /g/ and the aspiration following the release of the /k/ provide

additional evidence for voicing. The spectral characteristics of the release of the stops in

Figure 2.2 are quite similar and typical of a velar place of articulation.

In task 2, an alveolar strong fricative (/s/ or /z/) preceded a syllable-initial stop, where

the fricative may or may not have been in the same syllable as the stop. The presence

of the fricative potentially affects the identification of both the place and voicing of the

stop. Since a fricative precedes the stop, the formant transitions out of the preceding

vowel should always indicate an alveolar place of articulation for the fricative instead of

22
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0.0 ILI M,2 CL3 0.4 o.,5 0.0 0.1 o., I.3 GA. 0.1 U. &3s M. 0.0 0.1 U, 0.3

"tle (ftcmds) tale Timed) (mcomdl) "Tme (Mcftds)

ays-ps / / O /P / aes-b:" / / oz-bm/

Figure 2.3: Spectrograms of /aYs-ps/,/o-spe/,/xs-br/ and /oz-bwl.

I

indicating the place of articulation of the stop. flowever, cues to the place of articulation
~of the stop may be present at the end of the fricative. An example of one such cue can

be seen in the leftmost spectrogran in Figure 2.3. The lower frequency limit of energy
l at the end of the/Is/ is falling into the stop. This pattern is called a labial tail, and

occurs because the lips move to form the stop closure while the fricative is still being

~produced.' The voiceless stops (/p,t,k/) are typically unaspirated when they are in a

cluster with an Is/and have a shorter VOT (D avidsen- Nielsen, 1974; Klatt, 1975; Zue,

~1976). The lack of aspiration and reduced VOT may lead to errors in the identification

of voicing if subjects are unable to determine that the stop is in an /s/-cluster. The

remaining spectrograms in Figure 2.3 illustrate the similarity among an /sp/-cluster and
1 a/b/ preceded by an/Is/and a /z/.

~Phonotactic constraints may also be applied in this task. For example, if the subject

could identify the fricative as a /z/, then the subject knew that there must be a syllable
boundary before the stop, and that syllable- initial voicing cues should be used. Since the

Z'The same pattern is also common preceding phonemes that are rounded. Perturbation theory (Fant,

1960) predicts the lowering of resonant frequencies due to lengthening the front cavity by protruding the
~lips or as a consequence of forming a constriction at the lips.
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identity of the fricative may have influenced the identification of the stop, subjects were

also asked to identify the fricative as either an s/or a /z/. I
I

K7 Ii, i

. .. .. I.....llLi

*a its ' eI i

, IIIIWIIi

"drain" "Jane"
Figure 2.4: Spectrograms of "drain" and "Jane."

The stimuli in task 3 consisted of tokens of syllable-initial stop-semivowel clusters and

of affricates, /j/. This task investigated the effect of the semivowels /l,r,w/ on stop I
consonant identification. Earlier acoustic studies (Lehiste, 1962; Klatt, 1975; Zue, 1976)

have shown that semivowels affect the acoustic characteristics of neighboring sounds. In

particular, semivowels tend to strengthen and lengthen the release of a stop and change its

spectral characteristics. There is often a longer period of frication noise than observed for

singleton stops which may cause voiced stops to be mistakenly identified as voiceless. The

affricates were included in order to determine if the increased frication present in /dr/ and

/tr/ clusters was sufficient to make them confusable with affricates. Figure 2.4 illustrates
the acoustic similarity of the words "drain" and "Jane." Phonotactic constraints can also

be applied in this task, as certain stop-semivowel combinations (such as a syllable-initial I
/tl/) are not permissible.2

2 While theoretically such sequences cannot occur, in reality they sometimes do. For example, the I
reduced vowel in "Toledo" can be deleted, leaving behind the sequence [l]. This is a fairly rare occurrence
and is therefore not considered here.
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"poppy" "bobby"
Figure 2.5: Spectrograms of "poppy" and "bobby."

Some researchers have argued for the syllable as a unit of representation in phonology

(for example, Kahn, 1976). As such, syllable position is expected to play a role in speech

production and perception. Task 4 assessed the subject's ability to identify singleton
stops in non-syllable-initial position. Non-syllable-initial refers to both syllable-final stops

and ambisyllabic3 stops. Non-syllable-initial stops are more difficult to identify than

syllable-initial stops, since they often do not exhibit as robust a release. Voiceless stops

in non-initial position frequently are unaspirated, making the determination of voicing

much harder. Although syllable-final stops are often not released, only those transcribed
as having both a closure interval and a release were used as stimuli.

Figure 2.5 shows spectrograms of the words "poppy" and "bobby." The initial stop in

each word exhibits its typical, syllable-initial, prestressed characteristics. The spectral

amplitude of the release is weak in relation to the vowel, with the energy distributed
3According to Kahn (1976) ambisyllabic consonants are those shared by two syllables. They occur

in instances where placement of a syllable boundary is arbitrary: "it makes sense to speak of hammer
as consisting of two syllables even though there is no neat break in the segment string that will serve to
define independent first and second syllables." [p. 33]
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/cndi / /enti/
Figure 2.6: Spectrograms of /cndi/ and /enti/.

evenly across all frequencies. The VOT of the initial /p/ is almost 80 ms and the release

is followed by a period of aspiration. In contrast, voicing begins shortly after the /b/

release. The second stop in each word occurs in a falling stress environment. The VOT of

the second /p/ in "poppy" is about the same as the VOT of both of the /b/'s in "bobby."

Some cues to voicing are the duration of the preceding vowel (the /a/in "poppy" is about

two-thirds as long as the /a/ in "bobby") and the strong voicing in the closure interval of

the /b/. Place of articulation may be easier to determine than voicing for the non-initial

stops. 3
Although studies (House and Fairbanks, 1953; Peterson and Lehiste, 1960; Klatt, 1976;

Hogan and Rozsypzl, 1980) have shown that vowels are longer when they precede a

voiced consonant than when they precede a voiceless one, it is unclear how useful this

is for identifying stops in as limited a context as required in the previous task. Phillips

(1987) had listeners label vowels presented with only the immediate phor -tic context and

found inter-listener agreement to be roughly 70%. Many of the errors were differences I
in vowel color or in the tense/lax distinction. Identification of stops in task 5, consisting

I
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of non-syllable-initial homorganic nasal-stop sequences, may be easier than identification

of singleton non-initial stops, as the nasal may encode the voicing contrast in a more

accessible manner (Raphael et al., 1975). It has been observed that nasal murmurs are

shorter preceding voiceless stops than voiced stops (for example, Glass, 1983; Zue and

Sia, 1984). Figure 2.6 illustrates the difference in nasal murmur duration preceding a3 voiced and a voiceless stop. Improved identification accuracy in task 5 relative to task 4

would lend support to this hypothesis.I
2.3 Database and token selection

This section describes the selection of tokens used in the listening experiments. The

tokens used in the spectrogram reading experiments were a subset of the listening tokens.

The speech tokens were selected from two speech databases developed at MIT. The

first is a collection of 1000 sentences recorded at MIT, referred to as the Ice Cream

Database (IC). These sentences are the first 50 sets of the Harvard Lists of phonetically

balanced sentences (Egan, 1944), with each set of 10 sentences spoken by one male and

one female. The second corpus is a subset of the TIMIT database (Fisher et al., 1986;

I Lamel et al., 1986). The 2646 sentences consist of 7 sentences from each of 378 speakers,
114 female and 264 male. In the TIMIT database, each of 450 sentences was spoken by 7

different speakers. Associated and time-aligned with each sentence are an orthography,
a phonemic transcription including lexical stress, word boundary, and syllable boundary

markers, and a phonetic transcription. The corpora differ in the distribution of word

types, style of sentences, speaker set, and recording conditions. The TIMIT database

has more polysyllabic words and a wider range of sentence types than does IC. IC was

recorded using a Sony omni-directional microphone, located on the chest while TIMIT
was recorded using a Sennheiser close-talking microphone. Because the omni-directional

microphone was able to pick up the sound radiated from tissue vibration in addition to

the sound from both the oral and nasal cavities, IC has more low frequency energy for
weak voiced sounds. This means that voicing during closure intervals and nasal murmurs

is often stronger than in TIMIT.

I The overriding concern in token selection was to have enough examples of the environ-

ments of interest, while maintaining high diversity. Since the tokens for the listening
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tasks were selected from existing corpora it was not possible to balance exactly for token

context within or across tasks. Thus, an attempt was made to eliminate any bias in

the tokens at the cost of adding more variability. Tokens were selected by searching the
phonemic transcription of the sentence to find potential regions consisting of the conso- -
nants of interest and the surrounding vowels. The phonetic and phonemic, transcriptions
were then compared for agreement. For example, the selection of tokens for task 1 pro-

ceeded as follows. First, all portions of the phonemic transcription matching the sequence

[vowel] [syllable-boundary-marker] [stop] [vowel] were located. Next, the corresponding re-

gions of the phonetic transcription were checked to insure that the phonetic identity of

the stop agreed with its phonemic transcription. In order to be included, each stop must

have been phonetically transcribed as having both a closure interval and a release. The

restriction that a stop have both a closure and a release eliminated approximately 30%

of stops occurring in the contexts of interest.

After finding all the potential tokens, a subset was chosen for each task. These tokens were

selected by hand according to the following "selection guidelines," aided by algorithms
to assess the properties of the set. Since the recording conditions and sentence corpora

are different for the two databases, an attempt was made to have equal proportions from m
each. Another aim was to have roughly the same number of tokens from male and female

speakers and to use tokens from as many speakers as possible. Selecting tokens from as m

many speakers as possible helped to eliminate any speaker or sex bias. Since in both of
the databases the same sentence orthography was used as the basis for the utterances

of multiple speakers, an effort was made not to reuse the same portion of a sentence
for different speakers. Unfortunately, for some of the rarer environments, this condition

could not be met.

Table 2.1 is a summary of the token sets for each task with regard to the number of 3
speakers, sex, and database. An attempt was made to have equal proportions of male

and female speakers from each database.4 In general there are fewer tokens from the 3
IC database, but this is to be expected as there were less than half as many sentences
as in TIMIT. Table 2.2 shows the number of distinct preceding and following vowels,

and the number of distinct vowel contexts for each task. The American English vowels

included were /iyieyEMaoouU,A,:yayea,1,/.. For all of the tasks, at least 15
4This goal was achieved for most of the tasks. However, in tasks 2 and 5, only 36% and 39% I

respectively of the tokens from the TIMIT database are female.
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of these vowels were present in the same syllable as the stop. All 18 occurred after the
stop in tasks 1 and 2, and before the stop in task 4. The total number of possible vowel

contexts is 324 and the number of distinct contexts occurring for each task is shown in

Table 2.2. The aim in selection was to provide enough distinct contexts for variety and

coverage, while having enough samples of a given context such that the responses are
statistically meaningful. If vowels are classified according to features, such as front/back

or stressed/reduced, the coverage is more complete.|
Table 2.1: Distribution of listening task tokens with regard to database and sex.

1 Number PercentjPercentfNumber ofPercent Percent

Task of tokens TIMIT IC talkers male female
1 633 55 45 343 51 49
2 313 59 41 219 58 42
3 312 53 47 207 51 49

4 275 61 39 197 52 48

5_ 11 160 59 41 131 55 45

Table 2.2: Phonemic contexts of listening task tokens.

Number Number of Number of Number
of preceding following of vowel

Task tokens vowels vowels contexts
1 633 14 18 131

2 313 14 18 88
3 312 12 17 72
4 275 18 12 111
5 1 160 15 13 54

2
I
I
I
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Perceptual Experiments U

In this chapter a set of perceptual experiments aimed at evaluating the listeners' ability

to identify the stop consonants in a variety of local phonemic contexts are described.

These experiments explored if there was sufficient acoustic information present in the

extracted waveforms to allow listeners to identify the stops. Listeners were evaluated on I
the tasks described in Chapter 2. The remainder of the chapter proceeds as follows. In

section 3.1 a summary of related work is provided. Section 3.2 describes the details of the I
test presentation. The perceptual results and discussion for each of the tasks individually

are presented in Section 3.3, followed by cross-task comparisons.

3.1 Related work

Although over the last 40 years many experiments to evaluate the listener's perception

of speech sounds have been conducted, none of the reported studies seem to address U
the problem of interest-the identification of the stop consonants in a limited phonemic

context from multiple speakers. In this section some of the more closely related work is
presented in an attempt to illustrate that point. Most of the reported studies of speech

sounds in limited context were aimed at the perception of monosyllabic words or nonsense I
syllables (both natural and synthesized) and of speech sounds in noise. Since this research

is not concerned with the effects of noise on perception, the experimental results for the

best (least noisy) conditions are given. In addition, only studies using natural, not

synthetic speech, are reported. Fairbanks (1958), in the well-known Rhyme Test, found

listeners to achieve 89% correct identification of the initial consonant of monosyllabic
words. The typical stem for the rhyming words had 8 to 9 possible completions. House
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et al. (1965) reported results for a Modified Rhyme Test (MRT) where the listener chose
from a closed response set of size six for consonant-vowel-consonant (CVC) words. In
their experiments, listeners identified the consonant correctly about 97% of the time.

Nusbaum et al. (1984) report a 96.6% identification rate for 16 consonants in CV syllables
with /a,i,u/. They point out that these rates are lower than found for the MRT, but

that the listeners have more choices to decide among. The identification was also vowel

dependent, being highest for /i/ (98.5%) and lowest for /u/ (95.2%).

I As part of their investigation of the perception of speech sounds in noise and of-band-

limited speech, Miller and Nicely (1955) looked at perceptual confusions among English
consonants preceding the vowel /a/. The overall identification accuracy was 90.8% for a
speech-to-noise ratio of +12 dB. The error rates within the stop class were roughly 10-
15%, with the exception of /t/ which had a 2% error rate. Most of the confusions for the
voiceless stops were between /k/ and /p/. The authors proposed that the high frequency

burst of the /t/ separated it out, but that /p/ and /k/ needed to be distinguished by
the aspiration transitions. For the voiced stops, most /b/'s were confused with voiced,
weak fricatives, but /d/ and /g/ tended to be confused with each other. A later study

by Clark (1983) reports an overall 95.6% open response identification rate of consonant-
/a/ syllables with 22 possible consonants. While identification rates for stops were not
explicitly presented, stops were among the most accurately identified consonants.

Winitz et al. (1972) reported on the identification of the voiceless stops isolated from
conversational speech. The stops were presented with 100 ms of the associated vowel.

Correct identification was approximately 66% for the initial stops and 70% for final.
This result is contrast to the finding in the earlier MRT study (House et al., 1965) that,
averaged over noise conditions, stops were more accurately identified in initial position3than in final position. An explanation given by the authors for the better identification

of final stops is that the two talkers had experience or professional backgrounds in the5 speech arts and that the final stops were "perceptively released."' Pickett and Pollack

(1964) studied at the intelligibility of words excerpted from fluent speech. They varied
* the speaking rate and found that the intelligibility increased with either the number of

words in the sample or the sample's total duration. The word identification rate was 55%3 for single words, 72% for two-word sequences, and 88% for three-word sequences. The
1Another observation is that one of the main sources of error in initial position was /ki/-/ti/

confusions. Since no /ik/ tokens were included in the final test, no /ik/ -* /it/ confusions could occur.

3
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authors concluded that the listener needs about 0.8 sec of speech to make almost perfect

identification of the words. I

3.2 Experimental conditions i

In this section the details of the experimental conditions for this study are presented. !
These include the preparation of the audio tapes used in the tests, and the test presen-

tation.

Audio-tape preparation: The selected tokens were extracted from digitized contin- i
uous speech and randomized. Each token consisted of the stop or consonant sequence

and both the preceding and following vowels in their entirety. The token was then

tapered2 and played through a Digital Sound Corporation DSC-200/240 D/A converter

and recorded on a Nakamichi tape deck. Each token was played twice, with a repeat 3
interval of one second. The inter-stimulus interval was one second for all the tasks except
task 2, where it was two seconds. Listeners were allotted more time for this task because

they had to make decisions about the identity of both the fricative and the stop. A block

size of 10 tokens was used, with a five second inter-block interval. The first 10 tokens

were repeated at the end of the tape, allowing the initial and final 5 responses to be
excluded from the scoring.

Tasks 1 through 4 were divided into two parts, ranging in duration from 15 to 30 minutes

long. Task 5 was about 20 minutes long. Table 3.1 shows the number of samples for each

task and the approximate time for the tape. Note that the number of tokens do not add

up to the total number of tokens given in Table 2.1. This is because some of the tokens

(10 for task 1, and 20 for tasks 2, 3, and 4) were presented in both parts. The duplicated I
tokens could also be used as a check on listener consistency.

Test presentation: Ten subjects, all native speakers of American English with no
known speech or hearing defects, took each experiment.3 In this way a direct comparison

2The initial and final 20 ns of the waveform was tapered by half of a 40 ms Hanning window to
reduce edge effects which may be distracting to listeners. Unfortunately sometimes listeners could still
hear the effects of neighboring sounds.3There were only nine subjects for experiment 1 because one subject did not show up on the second
day.
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I Table 3.1: Number of tokens and tape durations for each task.

I Number Tape

Task of tokens duration (min.)
la 340 33
lb 313 30
2a 170 17
2a 173 17
3a 170 16
3b 172 16
4a 150 15
4b 155 15
5 160 17

I
could be made across two tasks for a given listener. The tests were given simultaneously to

I five subjects in a sound treated room. The subjects listened to the test using Sennheiser

HD430 headphones. The volume was adjusted to a comfortable level. At the start of

each test, subjects were given an instruction sheet to read and simultaneously heard the

same instructions. The instructions were followed by five example tokens, with answers

supplied on the instruction sheet, and ten practice tokens, for which listeners supplied

responses. No feedback was provided for the practice tokens. Subjects were given a closed
set of responses to choose from and told to always provide an answer. Listeners were3 asked to identify the stop as one of {b d g p t k}. In task 2, listeners also identified the

fricative by circling s or z on the answer sheet. In task 3, listeners chose from the set of3 {b d g p t k j ch}. Subjects were allowed to supply an alternate choice when they were

unsure, with the hope that the alternatives supplied would provide insight into which

features of the stimulus were ambiguous. Each session lasted about one hour. Since the

testing was fairly tedious and long, subjects had two breaks during the session.

I Different groups of subjects took each of the experiments shown in Figure 2.1. This had

an added advantage of having multiple groups take tasks 1 and 4, providing more data.

Experiments I, II, and III had two listening sessions each, separated by one week. The

presentation order of the tests, with regard to session and task, was varied across the3 subject groups. Table 3.2 shows the test presentation schedule.

I
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Table 3.2: Presentation order of the experiments to subject groups.

Number of
Experiment Group subjects Day 1 Day 2

I A 4 task lb task 2b
task 2a task la

B 5 task 2b task lb
task la task 2a

II A 5 task la task 3b
task 3aIl
task 3a task lb

B 5 task 3b taskila

task lb task 3a
III A 5 task la task 4b

task 4a task lb
B 5 task 4b task la

task lb task 4a
IV A 5 task 4a,4b

task 5
B 5 task 5

task 4b,4a i
3.3 Results and discussion

In this section the results of the perceptual experiments are presented. Although the

listening tasks were organized into experiments, the results are given for the individual I
tasks rather than for the experiments. The subject data for each task has been pooled

from the different experiments. The differences among subject groups were small com-

pared to the variation across subjects within a group. Identification rates are compared

for all the tasks, followed by an analysis of each task individually. 3
The listeners' ability to identify stops ranged from 85% to 97% across the tasks. The

overall identification rate for each task is shown in Figure 3.1. The highest overall iden-

tification rate of 97.1%, based on 18,357 responses by 29 listeners, was obtained for the

syllable-initial singleton stops of task 1. Nine subjects took the test for task 2 consist- 3
ing of syllable-initial stop consonants preceded by an alveolar strong fricative. 88.3% of

the 2822 responses were correct. The decline in performance from the singleton stops I
indicates that the presence of the fricative affected the listeners' perceptions. However,

I
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Overall Identification Place Identification Voicing Identification
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Figure 3.1: Listeners' identification rates for each task: overall, place place of articulation,
and voicing characteristic.

I it was not simply the presence of extra consonants that caused the performance degra-

dation, as illustrated by tasks 3 and 5. A more detailed discussion is provided in the

task-specific subsections. Syllable-initial stop-semivowel clusters and affricates were pre-

sented in task 3. The average identification rate, on 3120 responses from ten listeners,3 was 96.1%. As will be discussed later, most of the errors were confusions among the

clusters /dr/, /tr/ and the affricates. In task 4, the syllable position of the singleton3 stop was varied. Twenty listeners provided 5500 responses for the non-syllable-initial

singleton stops, resulting in an identification rate of 85.1%. This identification rate was

substantially below that of syllable-initial singleton stops, indicating that the task was

more difficult for the listeners. On task 5, where the non-syllable-initial stops were in

homorganic nasal-stop clusters, the identification rate was 93% on 1488 responses by 10

subjects. There was an improvement in identification accuracy of roughly 8% from task

4 to task 5.

An analysis of the errors provides insight into what factors may be important in per-

ception. Figure 3.2 shows a breakdown of the errors with regard to place of articulation

and voicing contrast. For all tasks, the percentage of voicing errors was greater than
the percentage of errors in place. In general the number of double feature errors was

small-i.e., rarely were both place and voicing heard incorrectly. Listeners neglected to

provide an answer less than 0.3% of the time, comprising 1% to 5% of the errors.

I
1 35



I
Chapter 3. Perceptual Experiments 3

I
100"

80' aftmcate
2 n nLu60-bt

40- voicingI

I 202

01 - -. ,

1 2 3 4 5
Task Number

Figure 3.2: Breakdown of listeners' errors for each task according to the dimensions of
place and voicing. Stop-affricate confusions are included for task 3.

With the exception of task 3, the majority of errors were in voicing only. In task 3 many

of the errors were stop-affricate confusions. In fact, as shown in Figure 3.1, place of

articulation was correctly identified at least 98% of the time for all tasks. The rangefor

voicing was much larger, from a low of 86.3% for task 4 to a high of 98.1% in task 3.

In the remaining subsections, a more detailed, task-specific analysis of the errors is given.
In particular, attention is focused on understanding the voicing errors, since these account
for the majority of the errors. Some simple acoustic measurements provide additional I
insight.

3.3.1 Task 1: Perception of syllable-initial stops I
A confusion matrix of the responses for task 1 is given in Table 3.3. The identification I
rates vary across the stops. Voiceless stops were identified more accurately than voiced

stops, with better than 98% correct identification. Identification rates for the voiced

stops are 96.5% for /b/ and /d/, and 94% for /9/.

Errors tended to cluster, with some tokens being misheard by several listeners. 4 Of the

4This clustering of errors was found for all of the tasks.
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3 Table 3.3: Confusion matrix for listeners' identification of syllable-initial singleton stops.

Number Percent Listener's response
Answer of tokens correct bi d 9 p t jkJ none

b 110 96.5 3081 25 4 74 1 5
d 101 96.6 9 2828 23 2 59 8
9 98 94.0 7 3 2672 2 156 2
p 109 98.2 46 3103 5 1 6

[]t 109 98.2 1 36 9 1 3 13105 3 3

k 106 98.5 6j 31 4 2+3028 3

633 distinct tokens 495 (78.2%) were correctly identified by all listeners. Less than half of

the 138 error tokens account for more than 85% of the errors. The tokens can be divided

into two sets: the first consisting of tokens that were heard correctly by all listeners (AC,

for "all correct") and the second containing tokens that were misheard by at least one

listener (SE, for "some error").

For this task it is proposed that the voice-onset-time (VOT) is a primary acoustic cue

for voicing. While there are multiple acoustic cues that indicate the voicing feature, the

supporting acoustic evidence provided here generally refers only to VOT measurements.

This is in part because VOT can be measured fairly easily and reliably. In fact, the
time-aligned phonetic transcriptions associated with the spoken waveforms provided the

VOT directly. In addition, other acoustic cues such as the onset of the first formant, the

breathiness at the onset of the vowel and presence/absence of prevoicing during closure

Smay-be correlated with the VOT (Lisker and Abramson, 1964). VOT distributions for
voiced and unvoiced stops are shown in the smoothed histograms of Figure 3.3. The

I voicing classification was obtained from the phonetic transcription. While unfortunately

this labeling is still somewhat subjective, it hopefully represents the speaker's intention.5

It can be seen that the distributions of VOT for voiced and unvoiced stops overlap more

for SE tokens than for AC tokens. For convenience, VOT values less than 30 ms are3 defined as short and VOT values greater than 50 ms are defined as long. For the AC

distributions, 14% of the tokens have VOT's between 30 and 50 ms. Almost 33% of the

'In cases where the majority of listeners were in agreement with each other but disagreed with the
provided phonetic transcription, the transcription should be reconsidered. With the exception of /t/
in task 4, such disagreement between the listeners and the transcription were few (less than .3% of the3 tokens).
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100-
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70- SE N X(ms) I u(ms)
60 V 220 21.3 8.8

CO 5- UV 272 65.5 18.92. 4o-
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20 UV 52 54.7 23.5

A 60 100 160
VOT (me)

Figure 3.3: Smoothed histograms of VOT for voiced and unvoiced syllable-initial single-
ton stops: AC (top) and SE (bottom). The mean (X) and standard deviation (a) for
each distribution are shown in the figure and provided in the table. The exploratory
data analysis tool SEARCH (Randolph, 1985; Zue et al., 1986) was used to analyze and
display the acoustic measurements. All of the histograms in this thesis were created using
SEARCH.

SE tokens fall into the same region. Thus, if short VOT values indicate voiced stops

and long VOT values indicate unvoiced stops, more SE tokens fall into the region where

VOT may not provide enough information to specify the voicing feature. Roughly equal

numbers of voiced and unvoiced stops have VOT values that are neither short nor long.

Most of these tokens are /g/ or /p/.

Table 3.4 shows a confusion matrix for the voicing dimension alone. The majority, almost

70%, of the voicing errors were voiced stops mistakenly called voiceless. The direction

of the voicing errors was opposite of what had been expected. I expected some of the

voiceless stops, particularly those preceding reduced vowels' to be mistaken for their

voiced counterparts. However, even for stops preceding reduced vowels, the majority of

6Reduced vowels are those that were transcribed as a schwa, /i, a, r'/.
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3 Table 3.4: Listeners' identification of voicing in syllable-initial singleton stops.

AI Listener's response
Answer voiced voiceless none

voiced 8652! 294 153 voiceless 129 9255 12

3 voicing errors were voiced stops heard as voiceless.' To further investigate the errors, I

listened to and looked at spectrograms of the tokens preceding reduced vowels. It appears3 that in reduced environments the vowels are often shortened as much as, or more than,

the stop release. Listeners appear to able to assess voicing correctly from the relative

duration and the presence of aspiration. This direction of voicing errors (from voiced to

voiceless) was seen across sex and database.

70

60 --- d-- 9
o0 b N T(s) 0(ns)

b 110 17.4 8.6

40 d 101 21.8 8.9
q_ 30. 98 30.3 10.4CL 2o-
E 0

I _ _ o-
40 Xfm T ° I . . I . . . . .

3o p 109 53.6 18.6
I t 109 67.7 19.2

I k 106 70.1 , 18.6

10

0 60 100 150
VOT (ms)

I Figure 3.4: Smoothed histograms of VOT for syllable-initial, singleton voiced stops
/b/,/d/,/g/, and voiceless stops /p/,/t/,/k/.

7Only 39 of the 633 tokens of singleton, syllable-initial stops preceded reduced vowels.

1 39



Chapter 3. Perceptual Experiments

Although no factor obviously accounted for the direction of the voicing errors, the follow-

ing observations may lend some insight. The first regards voicing in the closure interval.

Many of the voiced tokens that were misheard lacked a significant amount of prevoicing in

the closure interval. Over half of the voicing errors for the voiced stops occurred on /g/.
/g/ has the longest VOT of the voiced stops, as can be seen in Figure 3.4, overlapping
with the VOT's for the voiceless stops (Lisker and Abramson, 1964; Klatt, 1975; Zue,

1976). It was sometimes hard to tell whether or not there was aspiration or prevoicing

present in spectrograms of /9/'s with voicing errors. It is possible that the long VOT,

even without the presence of aspiration, causes the perception of /k/. Two-thirds of the

voicing errors for /g/ occurred on back vowels, with 25% occurring for the vowel /A/.

The combination of a short vowel and the long VOT for /g/ may account for the higher

error rate, if the listener attempts to perform some form of durational normalization.

3.3.2 Task 2: Perception of syllable-initial stops preceded by /s/ or/z/

A confusion matrix for listener responses on syllable-initial stops preceded by / s / or / z/

is given in Table 3.5. Errors occurred on 37.1% of the 313 distinct tokens.' Identification

was less accurate for voiced stops than for unvoiced stops. Averaged across place, voiced

stops were correctly identified only 75.4% of the time, while voiceless stops were heard

correctly 94.1% of the time. The majority of errors were in voicing, with two-thirds of

the errors being voiced stops heard as unvoiced. This asymmetry in the errors occurred

aThere were three types of tokens in this task. When the preceding fricative is a /z/, there is a syllable
boundary between the fricative and the stop. /s/ can form a syllable-initial cluster with /p,t,k/ or can
occur before any of the stops if there is an intervening syllable boundary. The table below provides a
breakdown of the tokens in task 2 for these three conditions. /g/ is underrepresented because it was
rare in the database, as were stops following, but not in a cluster with, /s/.

/z/ /s/ not cluster /s/ cluster
z-b 30 s-b 13
z-d 30 s-d 13
z- 9  7 s-9  4
z-p 16 s-p 13 -sp 28
z-t 31 s-t 21 -st 33
z-k 32 s-k 12 -sk 30
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1Table 3.5: Confusion matrix for listeners' identification of syllable-initial stops preceded
Imby /s/ or /z/.

bN Number Percent I Listener's response

Answer of tokens correct b I d 9 p P t I k inone]
b 43 80.4 311 1 72 2 1
d 43 68.7 266 4 116 1
9 11 81.8 81 18
p .57 93.8 30 481 1 1
t 85 92.4 2 51 3 707 23 k 74 96.2 24641 1

3 across sex but not across database.9 Recall from earlier discussions (Figure 3.1) that

place was correctly identified almost 99% of the time.I
50 ___vV___uste UV-not-cluster

040 - UV-cluster ___

. - -- V N T(ms) a(ms)
E o V 97 23.7 9.73 30 UV-cluster 91 26.8 10.0

20 UV-not-cluster 125 59.3 21.5
.0
E
M 10
,z

0 50 100 150
VOT (me)

Figure 3.5: Smoothed histograms of VOT for voiced stops preceded by /s/ or /z/, un-
voiced stops in /s/-clusters, and unvoiced stops preceded, but not in a cluster with /s/
or /z/.

Several factors may affect the listeners' perception of stops preceded by /s/ or /z/. These

I include the role of VOT as an indicator of voicing, the voicing of the fricative, and whether

or not the fricative and stop form a cluster. Figure 3.5 shows distributions of VOT for

9Only 39% of the voicing errors for the IC tokens were voiced stops heard as unvoiced. This is due in
part to the distribution of tokens from the two databases. One of the main contributors of the voiced-
to-voiceless errors were voiced stops following /s/. Only 6 of the 30 tokens of this type come from the

* IC database.
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the three conditions: voiced stops, unvoiced stops in clusters, and unvoiced stops not in

clusters. There is substantial overlap between the first two conditions, illustrating the

reduced VOT of unvoiced stops in syllable-initial clusters with /s/.

100

2 87

40 35

a3- 20

V UV V UV V UV
short mid long

VOT<30ms 30msVOT<50rns VOT>50rms

Figure 3.6: Percent of tokens misheard for short VOT (VOT < 30 ms), mid VOT (30
ms < VOT < 50 ms), and long VOT (VOT > 50 ms).

The percent of tokens on which some listener made an error is shown in Figure 3.6 for

three categories of VOT: short (VOT < 30 ms), mid (30 ms < VOT < 50 ms), and long

(VOT > 50 ms). If listeners used VOT as the primary cue for voicing, then most of I
the stops (both voiced and unvoiced) with short VOT values should have been heard as
voiced. However, this was not the case. About half of the tokens with short VOT values
were heard with some error for both the voiced and unvoiced stops. Listeners somehow

"know" to adjust for the lack of aspiration and subsequent reduced VOT for stops in 3
/s/-clusters. Stops with long VOT's were almost always heard as voiceless. The data for

the mid-VOT stops show that more voiced stops were heard as unvoiced than unvoiced

stops heard as voiced.

The ability of listeners to identify the voicing of the stop depended on the identity of 5
preceding fricative. Figure 3.7 shows the percent of voicing errors as a function of the

fricative and the location of the syllable boundary. The error rate for unvoiced stops not 3
in a cluster with the preceding fricative was on the order of 3%, which is comparable to

the error rate observed for singleton unvoiced stops in task 1. Unvoiced stops in /s/-

clusters had an error rate of 10%, indicating that listeners did not always perceive the
fricative and stop as a cluster. The highest error rate of 45% was observed for voiced
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so 46

40 03 stop olyI _

23 fricative and stop
W30

2 20 15

I ,o - --- R
s#UV z#UV #sUV s#V z#V

Figure 3.7: Voicing errors as a function of fricative and syllable-boundary location.
Hashed regions show percent of errors where both the stop and fricative were misheard.I
stops preceded by /s/. Listeners had a tendency to hear these stops as voiceless, and

therefore in a cluster with the preceding /s/. When a voiced stop was preceded by a/z/,

the error rate was about 15%. In 73% of these cases, the /z/ was also identified as an/s/,

I suggesting that the listener perceived an /s/-stop cluster. 10 The tendency for listeners

to hear the voiced stops as voiceless may indicate that listeners favor syllable-internal

I clusters over cross-syllable boundary sequences, or may reflect a bias due to frequency of

occurrence in English (Denes, 1963; Hultzen, 1965; Lamel, 1984).

Listeners appear to be able use the identity'of the fricative to help identify the stop.

While I was not directly concerned with the listeners' ability to identify the fricative, I3 had listeners make that decision in an effort to determine if the perception of voicing of

the fricative influenced the voicing decision for the stop. Listeners correctly identified

the fricative 78% of the time, indicating that the decision was difficult. (Only 25% of the

fricatives were identified correctly by all the subjects.) The probability of perceiving the

stop correctly, given that the fricative was perceived correctly, was 0.90. If the fricative

I was incorrectly identified, the probability of perceiving the stop correctly was 0.81.

When the listener correctly perceived the fricative as a /z/, the probability of correctly

identifying the stop was 0.97, implying that listeners were able to determine that a syllable

boundary occurred between the /z/ and the stop. When the stop was preceded by, but

"For all the other conditions, where phonotactics allow both /s/ and /z/, the fricative error rate was
about 20%.

4
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Table 3.6: Confusion matrix for listeners' identification of syllable-initial stops in clusters
with semivowels and of syllable-initial affricates.

Number Percent Listener's response
Answer of tokens correct b [d[ 91p I t Ik[ I

b 46 96.3 443 2 3 9 2 1
d 22 83.6 184 6 27 3
9 32 99.7 1 319
p 46 98.3 3 452 2 1 2
t 37 95.9 1 355 1 12 1
k 65 99.5 1 647 2
j" 32 92.2 3 1 4 295 17
6 32 94.7 10 7 303

not in a cluster with an /s/, the probability of perceiving the stop correctly given that

the fricative was correctly identified, was only 0.77. It appears that listeners were unable

to determine whether or not the /s/ and the stop formed a cluster. The probability of

identifying the stop correctly, given that it was in an /s/-cluster and that the fricative

was heard correctly, was 0.90. The higher probability for stops in /s/-clusters suggests

there may be mutual information to help identify clusters"l or a listener bias favoring

clusters.

3.3.3 Task 3: Perceptior-of syllable-initial stop-semivowel clusters and affricates.

This task investigated the perception of stops in syllable-initial semivowel clusters with

/ l,r,w/ and of syllable-initial affricates. Phonotactic constraints limit the possible syllable-

initial stop-semivowel clusters. Except for /dw/ and /gw/, all of the allowable clusters

were represented,1 2 A confusion matrix for the listeners' responses is given in Table 3.6.

1 It is interesting to note that the probability of hearing an /s/ correctly given that it was in a cluster
was 0.89. This was higher than for /s/ not in cluster, 0.678, and for /z/, 0.771.

12The detailed token distribution with regard to semivowel is:

br 24 dr 22 gr 20 pr 24 tr 29 kr 24
bl 22 9 12 pl 22 k1 25

tw 8 kw 16
I 32 6 32
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The errors occurred on 18.6% of the 312 distinct tokens. Of the errors, 32.2% were er-

rors in voicing only, while almost half (60) were confusions between alveolar stops and

affricates. Note that only alveolar stops were ever confused with affricates.

Voiceless stops were identified more accurately than voiced. The overall identification

accuracy for voiceless stops was 98.3%, while the corresponding rate for the voiced stops

was 94.6%. Stops in semivowel clusters tend to have longer VOT's than singleton stops

(Lisker and Abramson, 1964; Klatt, 1975; Zue, 1976). Figure 3.8 shows distributions of

I VOT values for the stop-semivowel clusters. The VOT's for the voiced stops are longer

than those of the singleton voiced stops in Figure 3.4 by an average of 5 ms for /b/ and3 /9/, and 30 ms for /d/. Similar increases are seen for the voiceless stops. Since a long

VOT indicates a voiceless stop, a longer VOT (as a consequence of being in a semivowel3 cluster) should enhance its "voicelessness." When the semivowel increases the VOT (and

the amount of frication) of a voiced stop, it makes the stop seem less voiced. This may3explain why almost 77% of the voicing errors were voiced stops perceived as voiceless.

3 30-

d N X(ms) ou(ms)20-b b 46 22.7 8.2

d 22 50.2 13.9
O g 32 35.9 11.8

I E

.

E N T(ms) -(ms)
20 k p 46 62.3 19.1

t t 37 88_3 21.1
- P k 65 79.9 19.9

0-:
0 50 100 150

VOT (no)

Figure 3.8: Smoothed histograms of VOT for voiced stops /b/,/d/,/g/, and voiceless
stops /p/,/t/,/k/ in semivowel clusters.
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Table 3.7: Listeners' identification of /dr/,/tr/,/Y/, and //.

Percent 11 Listener's response__
Answer correct II dr I tr I n o 6. Inone

dr 83.6 184 6 27 3
tr 92.0 276 12 2

j 92.2 3 4 295 17 1
_ 94.7 10 7 303 I

The accuracy varied across the three semivowels, with the lowest error rate of 1.2% for

/w/. The error rate for /1/ was 2%, with /bl/ having the most errors. Although clusters U
with /r/ had the highest error rate of 4.2%, this drops to less than 2% if confusions with

affricates are excluded. 5

'ti

II S I
3 !

0 1 U . 0 0.1 0 as 0 u 1 U 0.3 0.0 0.1 U0 0.4
Tmms ) Time (m~s l.(~sd) Tim ("aeus)

(a) /odrA/ and /oTA/ (b) /*tra/ and /aaY/
Figure 3.9: Spectrograms of (a) /odrA/ and /oiA/ and (b) /otrm/ and /oWY/.

Almost half of the errors were confusions between alveolar stops and affricates. Table 3.7 1
shows a confusion matrix for the stop-semivowel clusters /dr/ and /tr/ and the affricates.

/dr/ had the lowest identification rate of 83.6%, with three-quarters of the errors being

confusions with / /. Note that /j/ was called /d/ only three times. Most of the /I/ errors

I
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were in voicing. All of the /tr/ confusions were with /6/, while the /Z/ confusions were
split between /t/ and /I/. From these confusions, and the complete confusion matrix

shown in Table 3.6, it can be seen that /dr/ was more likely to be confused with /I/ than

with any other stop. Similarly /tr/ was confused more with/ /.

The similarity between /dr,tr/ and /T,/ is illustrated in Figure 3.9. Part (a) shows

spectrograms of /odrA/ and /4jA/. Note that the /d/ release has much more frication

than is usually present in the syllable-initial singleton case. Listeners heard both of these

tokens correctly. Spectrograms of /otrw/ and /o aY/ are shown in part (b). Five of the

ten listeners confused the /Z/ with a /t/, while only one listener called the /t/ a//.

i 3.3.4 Task 4: Perception of non-syllable-initial stops

In this task listeners identified singleton, non-syllable-initial stops. To assess the role

I of syllable position in stop consonant recognition, the results of this listening task are

compared to the results found in task 1. The identification rate for non-syllable-initial

Sstops was 85.1% (see Figure 3.1) as compared to 97.1% for the syllable-initial stops. A

confusion matrix for the responses is given in Table 3.8.13 The errors occurred on 52% of3 the distinct tokens. The errors were not evenly distributed across place of articulation.

In particular, there were a striking number of voicing errors for /t/; almost 46% of the

responses for /t/ were in error. The next most error-prone stop was /p/, which was

misidentified almost 12% of the time.

3 As in the syllable-initial case, most of the errors were in voicing only. In the non-

syllable-initial case, almost 90% of the errors occurred on voiceless stops, 4 while in the

syllable-initial case most of the errors occurred on voiced stops. This effect was seen

for both databases and sexes. A possible explanation for this can be seen by looking at

histograms of VOT for the voiced and the voiceless stops, as shown in Figure 3.10. The

VOT's are shorter than in the syllable-initial case (see Figure 3.4), but the difference

is more dramatic for the voiceless stops. The VOT's of the non-syllable-initial voiceless

I stops are on the order of 20 ms to 30 ms shorter than those of syllable-initial voiceless

'3Although an attempt was made to have equal numbers of each stop, it was not possible. In particular,
as seen in the number-of-tokens column of the table, /b/ and /q/ are underrepresented.

14 Note that there were more voiceless tokens than voiced tokens in this test set. However, even
normalizing for the difference in the number of tokens, over 86% of the voicing errors were on voiceless

3 stops.
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Table 3.8: Confusion matrix for listeners' identification of non-syllable-initial singletonstops.I

I Number 1 Percent Listener's response
Answer of tokens correct b I d IF ] p I t k Inone

b 22 95.4 420 4 2 8 3 1 2
d 47 94.9 4 892 2 2 40
9 25 95.6 478 22
p 58 88.5 107 2 3 1027 12 8 1
t 58 54.3 4 503 13 2 630 5 3
k 65 94.8 2 1 41 7 15 1233 1

70-

m 60

v UV N (ms) o(ms)
40 V 94 19.4 10.2
30 I UV 181 36.3 15.5

M 20-

0 " 1 1 I . .I . . .

0 60 100 150
VOT (ms)

Figure 3.10: Smoothed Listgrams of VOT for the voiced and voiceless non-syllable-initial i
singleton stops. i
stops. This has two consequences which may affect perception. First, there is greater

overlap in the VOT distributions for non-initial stops than for initial stops. Second,

many of the non-initial voiceless stops have VOT's in the range of initial voiced stops.

If listeners use VOT as a primary cue for stop voicing perception, then more errors are

expected for the non-initial stops.

However, stops with short VOT's were not always heard as voiced. Figure 3.11 compares i
the VOT's for tokens that were heard unanimously correctly to those that were heard

in error by at least one listener. There is greater overlap between the distributions for
voiced and voiceless stops for SE tokens than for AC tokens. In fact, the voiced stop
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3 Figure 3.11: Smoothed histograms of VOT for the voiced and voiceless non-syllable-initial
singleton stops, AC (top) and SE (bottom).£
means for AC and SE tokens are the same: there is no significant difference even at the

3 0.2 level. On the average, for unvoiced stops, VOT's are longer for AC tokens than for

SE tokens. The means are different at a significance level of 0.005.

3 Note however that 30% of the voiceless stops heard correctly had short VOT's. This

provides evidence, along with the observation that listeners did substantially better than

3chance on this task, that there must be other voicing cues used by the listeners. This of

course, is nothing new. Stevens and Klatt (1974) proposed that the presence or absence

* of a rapid spectrum change at voice-onset is an important cue for voicing of initial stops.

Lisker (1957) notes that, in intervocalic position, the duration of the closure interval is

shorter for voiced stops than for voiceless stops. Studies have shown that the duration

of the preceding vowel is a good indicator of the voicing of a consonant (House and

Fairbanks, 1953; Peterson and Lehiste, 1960; Hogan and Rozsypzl, 1980). The duration

I of the preceding vowel for non-initial singleton stops is shown in Figure 3.12. Since the

distributions for voiced and voiceless stops overlap almost completely, it is unclear how

4
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useful the vowel duration was for the listeners. However, the data are confounded by

a variety of factors which may affect the duration and the listeners' decisions, such as

stress, the tense/lax distinction, whether the vowel is a monothong or diphthong, etc.

House and Fairbanks (1953) also found the fundamental frequency (FO) to be higher at 3
the onset of voicing after a voiceless consonant. Vocal-fold vibration during the closure

interval is also a cue to voicing. The relative importance of the various cues and their 3
interactions in the perception of continuous speech is still unknown.

40-

W.3 .. UV
E V N X(ms)Io(ms)

V 94 114.5 47.2
20 UV 181 97.4 36.9 I

I
10-

0 0 10O0 160 200

left vowel duration (me) I

Figure 3.12: Smoothed histograms of vowel duration preceding voiced and voiceless non-
syllable-initial, singleton stops. 3

Two types of stops were included in this task: syllable-final and ambisyllabic. The ambi-

syllabic stops were identified more accurately than the syllable-final stops. Ambisyllabic

stops had an identification rate of 90.7% -compared to 78.6% for syllable-final. Perhaps

the difference is due to differences in articulation. Some of the ambisyllabic stops may be

more closely associated with the following vowel and therefore have characteristics more

like a syllable-initial stop. The difference in identification may also be related to stress I
differences: 8% of the ambisyllabic tokens follow a reduced vowel, compared to 13% of

the syllable-final tokens. I
As noted earlier, /t/ was correctly identified only 54% of the time. One possible expla-

nation for the poor identification rate is that some of the /t/'s were produced as flaps.

(Recall that all the tokens were transcribed as having a closure and a release, so accord-

ing to the transcription, none should be flaps.) Figure 3.13 shows plots of the total stop

duration for the /t/ and /d/ tokens in non-initial position for AC and SE tokens. For /d/
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I
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3 Figure 3.13: Smoothed histograms of total stop duration for non-syllable-initial singleton
/d/ and /t/. Distribution of AC and SE tokens are shown for each stop.I
there is little difference between the distributions, while a noticeable difference occurs for

St/. Many of the SE /t/ tokens overlap with /d/ in total duration. Zue and Laferriere

(1979) studied the acoustic characteristics of medial /t,d/. In fact, the duration distri-

I butions for /t/ are similar to the distribution of unstressed /t/ of Zue and Laferriere.

Some of the /t/ tokens may correspond to what they classified as long flaps.15

3To check the suspicion that some of the /t/'s (or /d/'s for that matter) have turned

into flaps, I listened to all of the /t/ and /d/ tokens and also looked at spectrograms of3 them. Particular attention was paid to those tokens that were misheard. While about

30% of the tokens sounded like flaps, only 10% of the tokens of /t/ looked like flaps in

the spectrogram. An example of such a flapped /t/ is shown in Figure 3.14(a). Another

15% of the /t/'s looked a lot like /d/'s. Spectrograms of a /d/ and a /t/ that looks very

3 similar to a /d/ are shown in (b,c). Roughly 30% of the /d/ tokens looked like flaps.

15According to Zue and Laferriere in long flaps "pressure has built up behind the tongue constriction
and the release is accompanied by a burst of noise visible on the spectrogram." [p. 10441
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Figure 3.14: Spectrograms of (a) flapped /t/, (b) /d/, and (c) /t/ that looks like /d/.

3.3.5 Task 5: Perception of non-syllable-initial stops in homorganic nasal I
clusters 3

Task 5 was designed to check the hypothesis that stops in homorganic, non-initial nasal-

stop clusters were easier to identify than non-initial singleton stops. The identification

accuracy of 93% was an improvement of almost 8% over that of the non-initial singleton

stops, supporting the hypothesis. 3
A confusion matrix for the responses is given in Table 3.9."s Errors occurred on 26.8% of
the 160 distinct tokens. Of the errors, 71.4% were errors in voicing only. As in non-initial

singleton stbps, voiced stops were identified more accurately than voiceless.

As in task 4, both ambisyllabic and syllable-final homorganic nasal-stop sequences were

included. Ambisyllabic stops were identified more accurately (95.2%) than final stops

(88.9%). The difference is similar to that obtained for singleton non-initial stops, but

less in magnitude.

16 Voiced homorganic nasal-stop sequences are quite rare in the database and no tokens of /9/ satisfying
the selection criteria could be found. I included extra tokens of /nd/ and /nt/, hoping that any voicing
contrasts will hold for the other places of articulation.
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I Table 3.9: Confusion matiix for listeners' identification of non-syllable-initial stops in
homorganic nasal-stop clusters.

_____I Number IjPercentf Listener's response ___

Answer of tokens correct b d iJP t k] k none
b 12 94.2 113 2 5
d 57 94.7 7 540 5 1 16 1

p 26 91.9 10 7 2 239 2
t 55 90.0 45 3 1 500 1
k 10 96.0 4 96U

There was a notable improvement in the identification of /t/ in homorganic nasal-stop5 clusters relative to singleton / t/'s. While the non-initial singleton /t/'s had an error rate

of almost 50%, in homorganic nasal clusters the error rate was 10%. To what can this

improvement be attributed? I propose three explanations. The first is simply that the

presence of the nasal in the cluster inhibits the ability to flap.' The second possibility

is that the presence of the nasal simply increases the duration of the speech segment

presented to listeners, and that the longer duration encodes more information. On the

average, tokens from task 5 are 40 ms longer than tokens from task 4. According the

Pickett and Pollack (1964) this difference may contribute to the improved identification

accuracy. The third alternative is that the nasal is able to encode the voicing distinction

in a more accessible manner than does the preceding vowel.

3 Figure 3.15 shows that the VOT's of non-initial /d/ and /t/ have a better separation

when occurring in homorganic nasal clusters rather than as singletons. There are fewer

tokens of /t/ with VOT values less than 30 ms. The difference in means for /t/ and

/d/ is significant at the .005 level for both conditions. The total stop duration also has

a better separation for the nasal clusters, as shown in Figure 3.16. Although the /d/'s

I in /nd/ clusters actually have a shorter total duration than do the singleton /d/'s, the

difference is insignificant (significant oniy at the 0.2 level).

Information about the voicing of the. stop may be encoded in the preceding nasal.'"

'1In some pronunciations of words like "interesting" the /nt/ turns into a nasal flap. These were
excluded by the requirement that the stop transcription must have both a closure and a release.

'sThere may also be more voicing during the closure interval for the voiced stops. I did not rigorously3 check this possibility as it is often hard to tell where the nasal ends.
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Figure 3.15: Smoothed histograms of VOT for /d/ and /t/ in non-initial, homorganic
nasal clusters (top), and for non-initial, singleton /d/ and /t/ (bottom). I
Nasals preceding voiceless stops in the same syllable tend to have a shorter duration

relative to the duration of the closure interval than nasals preceding voiced stops. Figure

3.17 shows distributions of the nasal duration for voiced and voiceless stops. Although

there is a significant difference in the means (a =0.005), the standard deviation of each

distribution is quite large, casting doubt on the ability of listeners to use nasal duration

as an indicator of voicing. A related measure, the percent nasal duration relative to

the sum of the nasal and stop closure duration is shown in Figure 3.18. This measure 3
separates the voiced and unvoiced tokens better, and thus may be a better indicator of

voicing than the absolute nasal duration or the vowel duration (see Figure 3.12).

The data provide evidence for all of the proposed explanations. To further check the

amount of information encoded in the nasal, I looked at spectrograms of all the tokens.

In some cases the nasal duration clearly indicated the voicing of the stop. Figure 3.19

shows such an example for /nd/ and /nt/. For about 70% of the tokens, it seemed that I I
could judge the voicing correctly by looking at the nasal duration relative to the closure

5
54 I



U
3- Chapter 3. Perceptual Experiments

30-

20- _nd)_, t(nt) Task 5 N j'(ms) (is)

.Id d(nd) 57 48.8 18.7

i 10 =t(nt) 55 78.9 20.8

10

I
0

EM t Task 4 N (ms) I ,(rs)
=z20 d 47 51.9 16.3

10 t 158 72.5 25.1

0 ' 1 J' J I I I'I'

0 60 100 150 200
stop duration (ms)

3 Figure 3.16: Smoothed histograms of total stop duration for /d/ and /t/ in non-initial,
homorganic nasal clusters (top), and non-initial, singleton /d/ and /t/ (bottom).
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Figure 3.17: Nasal duration in voiced and voiceless non-initial homorganic stop clusters.

duration. In about 10% of the cases, the nasal information was misleading and in the
remaining 20% it was ambiguous. However, I -an not make any claims on what the

g listener is doing, only that the acoustic informati.i: seems to be available.
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Figure 3.18: Relative nasal duration in voiced and voiceless non-initial homnorganic stop
clusters.3
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3.4 Other factors
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3 Figure 3.20: Listeners' identification accuracy of stops as a function of the stress of the
right vowel and the left vowel.U
Stops in reduced syllables were less well identified than those in unreduced syllables asU illustrated in Figure 3.20. The identification accuracy is shown for reduced and not

reduced, right and left vowels. Syllable-initial stops had higher identification accuracies1 when the right vowel was not reduced. The identification accuracy for syllable-initial

stops was also higher when the left vowel was reduced because post-reduced stops were

3 generally in a rising stress position. The reverse holds for the non-initial stops. They

were identified more accurately following non-reduced vowels.

3 Figure 3.21 shows the overall stop identification rates as a function of the place of ar-

ticulation and voicing characteristic of the stop. Both errors in place and voicing are

3 included. There are some differences in accuracy across place. Velar stops had the high-

est identification rate for all tasks except singleton, syllable initial. As shown in Figure

3 3.4, it is likely that the long VOT for /q/ contributes to the high error rate. Non-initial

alveolar stops had lower identification rates primarily due to confusing /t/ with /d/.

This may be attributed in part to the shortened VOT and total stop duration seen for

/t/ (see Figures 3.13 and 3.15(bottom).) In task 3, alveolar stops in clusters with /r/

were sometimes confused with affricates.
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Figure 3.21: Listeners' identification accuracy of stops as a function of place of articula-
tion and voicing. e

Identification accuracy as a function of the voicing of the stop is also shown in Figure 3.21.

In syllable-initial position unvoiced stops were identified better than voiced stops. For

singleton stops the difference was about 2%, with many of the voiced errors occurring on

/g/. When preceded by a fricative, unvoiced stops were identified almost 20% better than

voiced stops. Unvoiced stops not in ms/-clusters tend to be aspirated and consequently

were not as confusable. Voiced stops, on the other hand, were likely to be confused with 

voiceless stops unless there were strong cues to voicing in the fricative or in the closure

interval. In semivowel clusters, the difference was almost 4%, and may be caused by

the increase in VOT (see Figure 3.8) and frication. noise. In non-initial position, voiced

stops were more accurately identified than voiceless. A partial explanation may be that

non-initial voiceless stops are sometimes unaspirated.

The effects of sex and database on the perception of stops is shown in Figure 3.22. In3

some of the tasks male talkers were identified better than female, however, in general,

the differences were less than 1%. While tokens from IC were consistently identified

better than tokens from TIMIT, the difference was only about 2%.19 TIMIT contains

19The exception is task 2, syllable-initial stops preceded by the fricatives Isl and /z/. Most errors
occurred when the fricative was an /s/ not in a cluster with the stop. 80% of these tokens came from the
TIMIT database, indicating that the differences observed between the databases may be token related. I
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Figure 3.22: Listeners' identification accuracy of stops as a function of the sex of the3 speaker and the database of the token.

3less carefully spoken speech than IC, with a larger variety of speakers and dialects. In

addition, the words and sentences are more complicated in TIMIT than in IC (Lamel et3 al., 1986).

Although there were too few examples to rigorously investigate the role of vowel context

on the place errors, some trends were observed. This discussion is based on tasks 1

and 4 for which tl 0re were the largest number of place errors. The most common place3 confusion for the singleton syllable-initial stops occurred between labials and alveolars

preceding front vowels. Some of the confusions may arise from the similarity in the3 formant transitions into the front vowel. Since front vowels ha:e a high second formant

target, the second formant will rise from the stop into the vowel for both labials and
alveolars. There were also some velar-alveolar confusions preceding front vowels which

may be due to similarities in the release spectra. Other confusions were velars mistaken
as abials preceding back vowels, and alveolars perceived as velars when followed by a

round or retroflex vowel.

3 An analysis of the place errors for singleton, non-initial stops also showed some trends.

For example, following front vowels, velar stops were more likely to be called alveolar3 than labial, while following back vowels, velar stops were called labial. Alveolar stops
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were called velar more often than labial when they followed front vowels. Independent

of vowel, labial stops were slightly more likely to be called alveolar than velar.

3.5 Discussion

From the data presented for tasks 1 and 4, it appears that syllable position affects

stop perception. Singleton stops were identified 12% more accurately in syllable-initial

position than in non-initial position. Although in both positions most of the errors were

in voicing, the direction of the errors was opposite. For the initial stops, the errors were

predominantly voiced stops called voiceless, whereas for the non-initial stops, voiceless

stops were called voiced. The increased error rate for non-initial stops may reflect the

lack of acoustic information during the release. As the non-initial voiceless stops may

have reduced or no aspiration, VOT cues may be misleading. The listener may be

forced to rely. on other cues such as the presence or absence of voicing during the closure

interval, the amount of change in the fundamental frequency, or the amount of first

formant motion. The ability to identify place of articulation did not degrade in non-

initial position, indicating that the release and surrounding vowels still provide sufficient

information.

While the above performance differences have been attributed to syllable position, the

stress environment has also changed. 66% of the syllable-initial stops occurred in a rising

stress environment whereas the same percentage of the non-initial stops occurred in a

falling stress environment. While differences in the stress patterns may account for some

of the error differences, fewer than 10% of the tokens were in reduced syllables.

Additional consonants in clusters with a stop may affect how it is perceived. In some

conditions the consonants aided perception and in others they increased the confusabil-

ity. When a syllable-initial stop was preceded by an /s/ or a /z/, place of articulation

perception was comparable to that of singleton stops. This implies that any place in-

formation "lost" in the preceding vowel either was compensated for by information in

the fricative or was redundant. In contrast, there was almost a 10% decrease in the

perception of voicing relative to singleton syllable-initial stops. In the earlier discussion

data refuting the hypothesis that VOT was the most important factor for the perception

of voicing were presented. However, one of the listeners, KG, appears to use the VOT
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as the primary cue. KG heard stops in clusters as voiceless only 65% of the time, well

below the average of 89%. KG also identified voiced stops correctly 90% of the time, as

compared to 75% averaged across all listeners. The other listeners seem to be using a

* different strategy for perception that adjusts for "cluster." Voiceless stops not in clusters

had an identification rate comparable to that for voiceless stops in task 1, indicating that

Sa long VOT cues voicelessness for stops preceded by fricatives as well as for singleton

stops.

I Identification rates for the stop-semivowel clusters of task 3 were almost as high as for

the singleton stops in task 1, indicating that the semivowel did not adversely affect the3 listeners perception of the stop. Many of the errors were due to /dr/ and /tr/ confusions

with the affricates. Since affricates were not included in task 1, a direct comparison3 is difficult. If confusions between stops and affricates are excluded, then the error rate

is about 2%. As for the singleton stops, most of the voicing errors were voiced stops

perceived as voiceless. The lengthened VOT and increased frication noise for voiceless

stops may increase their voicelessness, improving their perception.

IIn non-initial position, the presence of a homorganic nasal improved the listeners' iden-

tification of stops by almost 8% over the singleton case. The majority of the voicing3 errors for non-initial singleton stops occurred on voiceless stops; /t/ had a voicing iden-

tification rate close to chance. In the nasal clusters, the identification rate for /t/ was

91%. There are several factors which may contribute to the observed improvement. The

presence of the nasal inhibits the tendency to turn non-initial alveolar stops into flaps.
The duration of nasals in clusters with voiceless stops tends to be shorter, relative to the

closure duration, than that of nasals in clusters with voiced stops. The listener may be

able to use this durational information to decide voicing. In addition, the listener has3 more information available, both by the presence of an extra phoneme and by a longer

total token duration.

I In the next few paragraphs, a variety of issues related to this series of experiments are

discussed.I
Alternate choices: The first issue addresses the listeners' assessment of their own3 perception. Although listeners were encouraged to make a definitive decision, they could

supply alternate choices when they were uncertain. I hoped to determine what features

I
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Table 3.10: Listeners' responses when alternate choices were supplied. 3
Number of 1st choice 2nd choice

Task multiple choices correct (%) correct comment 3
1 128 64 30 73% unsure of voicing
2 29 36 61 100% unsure of voicing
3 29 66 31 30% unsure of voicing, I

50% alveolar-affricate
4 141 60 38 96% unsure of voicing
5 22 64 31 95% unsure of voicing

were causing the listeners' confusions by looking at their alternate choices. Table 3.10

shows the number of times a listener supplied an alternate choice, and which choice, if

any was correct for each task. When multiple choices were supplied, the first choice was

correct in roughly 60% of the cases. The correct answer was in the top two choices over

94% of the time. With the exception of task 3, most of the uncertainty was in voicing. 3
Recall from Figure 3.2 that most of the listeners' errors were also in voicing. For task

3, 50% of the second choices showed alveolar stop-affricate indecision, agreeing with the

largest source of errors for this task. Thus, the listeners' uncertainty, as evidenced by

the second choices supplied, is in agreement with the errors they made. 3
Token versus response: In presenting supporting acoustic evidence, I have chosen

to use the token, rather than response, as the unit of representation. (Recall, that to be

AC (all correct), the stop had to be heard correctly by all listeners, whereas SE (some

error), required only a single error.) This decision has the effect of weighting errors

more heavily than correct responses. While accentuating the differences for "reasonable"

errors, it also overemphasizes differences that may be due to listener inattention. I

Task variability: Another issue regards the variability across the tasks. As men- -
tioned previously, while selecting tokens I tried to avoid any systematic bias in the data.

However, because the tokens were selected from existing databases, it was not possible 3
to have complete coverage for all of the tasks. In particular, as the context became more

explicit, fewer tokens were available. The most extensive coverage was for the singleton, 3
syllable-initial stops of task 1, which included many vowel contexts. Since the exact

6
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vowel environment did not seem to be an important factor in perception for task 1, the

assumption was made that it was not a dominating factor in the other tasks.

Phonemic transcription: A similar problem lies in the determination of the "cor-

rect" answer. The correct answer was defined to be the phonemic transcription of the3 stop. Recall, that in order for a token to be included, its phonemic context had to match

the search conditions and the phonetic transcription of the stop needed to agree with its3 phonemic transcription. A question arises as to whether or not the transcription should

be considered in error, if all or many of the listeners disagreed with it. These have been3 counted as listener errors, but they could be considered transcription and/or production

errors.

3 Word effects: Sometimes it was possible to hear words or parts of words in a stim-

ulus. The perception of words arises because the speech was extracted from continuous

speech using times from the utterance's time-aligned phonetic transcription. Although

the transcription may place a boundary between the vowel and its neighboring phone,3 that phone may still influence the beginning or end of the vowel. This is particularly

true in semivowel-vowel sequences where it is often difficult to place a boundary. If the3 listener thinks s/he hears a word, s/he may use lexical information to identify the stop.

However, listeners may also think they hear words that are not there. The instructions3 warned the listeners of the situation: " Since these have been extracted from continuous

speech, some of the things you hear may sound like parts of words or word sequences

and others may not. Try not to allow your decision to be affected by what words you

think you hear." I do not know how often the listeners' decisions were influenced by word

* perception.

3 3.6 Summary

These experiments were performed in order to assess human listeners' ability to perceive
stops in limited phonetic environments. They also represent an effort to better under-

stand some of the factors involved in human stop perception. As such, these experiments

will serve as a baseline performance measure for comparison with spectrogram readers
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and the rule-based implementation. The parallel set of human spectrogram reading ex-

periments are discussed in the next chapter. 3
These perceptual studies indicate that: '

* People do quite well at identifying stop consonants presented in limited phonetic 3
context.

" Syllable position and.additional consonants affect stop perception: stops were bet- -
ter identified in syllable-initial position. Syllable-initial errors were primarily V -+

UV, while non-initial errors were UV --. V. Initial stops preceded by /s/ or /z/ had 3
a higher error rate for voicing than singleton stops. For non-initial position, stops

in homorganic nasal clusters were identified better than singleton stops.

" Other factors such as stress, sex and sentence corpus/recording conditions seemed to
be less important. However, stops in reduced syllables were identified less accurately 3
than those in unreduced syllables.

" There were too few errors to evaluate the role of vowel context on the place confu- 3
sions.

" Errors tended to cluster on particular tokens. U

I

I
I

I
I
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Spectrogram Reading Experiments

4.1 Introduction

U This chapter describes a series of spectrogram reading experiments which parallel the
perceptual experiments presented in Chapter 3. While previous spectrogram reading

results were presented in Chapter 1, these experiments differed both in focus and extent.
Tb e aim of these experiments was to evaluate ability of spectrogram readers to identify

stop consonants in a limited phonemic context, across many speakers, and in a variety of
environments. Of interest were both a baseline performance measure and a comparison3 between spectrogramn readers and listeners. Spectrogram readers were evaluated on the

same tasks used to evaluate the listeners, as described in Chapter 2. For each task, the
* reader was presented with a set of spectrograms of tokens consisting of portions of speech

extracted from sentences. As was the case for the listeners;, the readers were required3 to identify only the stop consonant from a set of allowable choices. In all, 615 tokens,
spoken by 299 speakers and extracted from over 500 sentences were identified.

3 Of particular interest were the following questions. Were spectrogramn readers more
.likely to make an error when a listener made an error? Did readers make the same

types of errors as the listeners? What factors or contexts affected their decisions? How

did the readers interpret the spectrogram? What acoustic attributes do they use and

how are they combined? In the rest of this chapter the data from the spectrogram

reading experiments is interpreted in an attempt to answer the aforementioned questions.
First the experimental conditions common to all the tasks are discussed. Then theI spectrogram reading results and discussions for each task are presented, followed by

cross-task comparisons.
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4.2 Experimental conditions

Token selection: The tokens for the spectrogram reading experiments were selected
from the tokens used in the corresponding listening task. The tokens for each task were

divided into two subsets: one having the same proportion of tokens heard with some error

as in the original task, denoted the balanced set, (B) and the other one heavily weighted
with tokens for which listeners made errors, the extra set, (X). The first subset provided

a way to compare spectrogram readers and listeners on a somewhat even basis. Since

listener identification was worse on the X subset, spectrogram readers were also expected
to make more mistakes, providing more data on which to base an analysis of the errors.

In addition, an attempt was made to obtain the same distribution with respect to speaker
sex, database, and stop identity as in the listening tests. Tables showing distributions
for these factors can be found in Appendix A. Given the above constraints, the number

of distinct preceding and following vowels and stress conditions were also maximized.

Spectrogram preparation and test presentation: The selected tokens were ex-
tracted from digitized continuous speech and randomized. Each token consisted of the

stop or consonant sequence and both the preceding and following vowels in their entirety,
as determined by the time-aligned phonetic transcription. A spectrogram was made of

each token using the Spire facility, as described in Chapter 1. An example token of / izp /
is shown in Figure 4.1.

Spectrogram readers were given a training set with answers supplied so that they could
familiarize themselves with the task.1 The subjects were given a test set of approximately

50 tokens at the same time, along with written instructions. While the training and test
sets given to any particular subject were non-intersecting, the test set for one subject
was sometimes used as training for another. The readers were not explicitly informed
about which task they were taking; however, they did receive a copy of the instructions

given to the listeners from which they could deduce that information. The subjects were

told to identify the consonant from the same set of choices given to the listeners. These
1The spectrogram readers were most familiar with reading spectrograms of isolated words or contin-

uous sentences.' Most had never participated in a test like this before. Training was self-paced; jubjects
were instructed to do as many of the training examples as they needed to feel comfortable with the task.
Recall that the listeners also had a small amount of task familiarization. They heard 5 examples (with
answers supplied on the instruction sheet) and another 10 examples for practice before each test.
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Figure 4.1: Example token of/izpe/, as presented to spectrogram readers.

3 were the stops {b,d,g,p,t,k} for all tasks except task 3, which also included the affricates

{3',U}. In task 2, readers were also asked to identify the fricative as either /s/ or /z/3 and, if they could, to determine whether or not the fricative and stop formed a cluster.

In the instructions subjects were encouraged to give alternate choices when they were

I uncertain of their decision.2 This was natural for them, as spectrogram readers typically

provide an ordered set of candidates. The alternate choices were intended to provide an3 indication about which features were in question.

Subjects: Five spectrogram readers participated in the experiments. The experience

of the subjects varied; one subject has been reading spectrograms for about 15 years
2 Readers were also asked to circle or to write comments about the events on the spectrogram that

helped them reach their decision. The comments helped in determining which acoustic attributes were
used by the spectrogram readers in forming decisions and lent some insight into how the information

n was combined.
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Table 4.1: Number of readers and tokens for each task

Task Number of Number of
number subjects tokens

1 5 263
2 2 102
3 1 51
4 3 153
5 1 46

investing over 3000 hours, the other four subjects have been reading spectrograms for
four to eight years, estimating their experience in the range of 300 to 700 hours. All of

the readers have taught the MIT version of a one-week intensive spectrogram reading

course at least three times. Only spectrogram readers who had taught the spectrogram
course were used as experts. While this distinction was made somewhat arbitrarily, it

could be made without having explicitly evaluated the readers' performances. Table 4.1
shows the number of subjects and total number of tokens of spectrograms read for each

task.3

4.3 Results and discussion I
This discussion parallels the discussion given for the listening experiments in section I
3.3. Overall results are presented first, followed by a separate section for each task.

Comparisons with the listening experiments are interdispersed throughout. While the
fairest comparison between readers and listeners would be on the balanced set of tokens,

all the data was used for the error analysis. The data are presented for the top-choice 3
accuracy on all of the tokens, combining data from the B and X subsets. In section 4.5
reader performance on the two subsets is compared.

Figure 4.2 gives the overall identification rates for each of the five tasks. The bar graph

represents the averaged scores for all readers. When multiple readers participated in

the experiment, the best and worst accuracies are also plotted. Listener scores for the

same token sets are provided for comparison. With the exception of task 2, spectrogram

readers identified stops 10-15% less accurately, on the average, than did the listeners. The
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m Figure 4.2: Readers' identification rates for each task: overall, place of articulation, and
voicing characteristic. The bar represents the average score for all readers. The open

m circle (o) is the best reader's score, the filled circle (e) shows the worst reader's score,
and the + denotes the average listeners' identification.

average identification rate for singleton, syllable-initial stops was 77.6%, while individual

readers' rates ranged from 68-83% correct. The averaged idepntfication rate on task 2,

syllable-initial stops preceded by /s/ or /z/, was 82.3%, with a 1% difference between

the readers. The one subject in task 3, consisting of stops in syllable-initial semivowel

clusters and affricates, had an accuracy of 72.5%. The average correct identification for

the non-initial, singleton stops in task 4 was 72.5%, with an inter-subject range from1 69% to 78%. For task 5, the one subject had an accuracy of 78.3% on non-syllable-initial

stops in homorganic nasal-stop clusters.

m Figure 4.2 also shows the identification of the place of articulation and the voicing char-

acteristic for all five tasks. Spectrogram readers identified place of articulation 5-10%

less accurately than listeners (see Figure 3.1). The variation across tasks was also larger

than for listeners: the accuracy for readers r,-nged from 87.1% for tasks 1 and 3 t, 93.5%

for task 5. Readers' identification of voicing ranged from a 'ow of 80.4% for task 4 to

93.: % for task 3.

I Another way of viewing the types of errors made by spectrogram readers is by the break-

down of the errors, as shown in Figure 4.3. In contrast to the overwhelming percenti ge of

I
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Figure 4.3: Breakdown of readers' errors for each task with regard to the dimensions of I
place and voicing. Stop-affricate confusions are included for task 3. I
voicing errors in the listening tests (see Figure 3.2), the readers' errors were more evenly
divided between place and voicing. For all tasks, a larger proportion of place errors was 3
made by readers than was made by listeners. With the exception of task 2, the number
of double-feature errors was small, i.e., rarely were both place and voicing misidentified. 3
Almost half of the errors for task 3 were confusions with affricates.

In the remaining subse tions, a more detailed, task-specific analysis of the errors is given. I

4.3.1 Task 1: Spectrogram readers' identification of syllable-initial stops U
A confusion matrix of the spectrogram readers' responses for task 1 is given in Table I
4.2. The identification accuracy varied across the stops, with /b/ having the highest

identification rate, 88.5%. Most of the /b/ errors were confusions with /d/, and usually I
occurred on tokens where the /b/ preceded a front vowel. /q/ had the lowest identification
rate of 66.7%, being confused primarily with /k/. Listeners also made the most errors on

/9/, identifying the tokens as /k/. The /p/ confusions were with both /b/ (half of them
preceding reduced vowels) and /k/ (preceding back vowels). The symmetric /k/-/p/ 3
confusion also occurred preceding back vowels. All of the /k/-/t/ confusions preceded

front vowels.

70



U
Chapter 4. Spectrogram Reading Experiments

Table 4.2: Confusion matrix for spectrogram readers' identification of syllable-initial
singleton stops.

U Number Percent Reader's response
Answer of tokens correct k

b 52 88.5 46 4 1 1
40 72.5 5 29 1 1 4

9 48 66.7 2 32 1 1 12
p 39 76.9 4 1 30 1 3
t 42 83.3 1 13 1 35 3
k 42 76.2 2 5 3 32I

4.3.2 Task 2: Spectrogram readers' identification of syllable-initial stops

preceded by /s/ or/z/

I Table 4.3 gives a confusion matrix of the readers' responses for task 2. As in the singleton

syllable-initial stops, /b/ had the highest identification rate of 93%. With the exception

of the labials, the voiceless stops were identified almost 30% better than their voiced

counterparts. This agreed with the listeners, who identified voiceless stops 10-20% better3 than voiced (see Appendix B, Table B.2). Almost half of the errors were in voicing; 71%

of the voicing errors were voiced stops labeled unvoiced. This effect is even stronger than

it appears at first, as there were more voiceless tokens than voiced. In fact, although

25% of the voiced tokens were mistakenly called voiceless, only 6% of the voiceless stops
* were called voiced.

Table 4.3: Confusion matrix for spectrogram readers' identification of syllable-initial
* stops preceded by alveolar strong fricatives.

[Number [Percent Raer' esosAnswer of tokens correct

b 15 93.3 14 1
Sd 16 56.3 1 9 2 3 1

9 8 62.5 5 1 2

p 18 88.9 1 16 1
St24 87.5 21 1 21H

k 21 90.5 -2 19
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Figure 4.4: Identification of voicing as a function of the fricative and the syllable-
boundary location for task 2.

The error rate as a function of the preceding fricative and the syllable-boundary location

is shown in Figure 4.4. Unvoiced stops preceded by /z/ had the lowest error rate of 5%.

Unvoiced stops preceded by Isl had about the same error rate (7-8%), whether or not

the stop was in a cluster with the /s/. Voiced stops preceded by /s/ had the highest error I
rate of 40%, which was comparable to the error rate for listeners (see Figure 3.7). In

75% of the cases where a voiced stop preceded by a /z/was called voiceless, the fricative

was also misidentified as an /s/. This suggests that the readers may have a bias towards

clusters, similar to that observed for the listeners. I
The readers, like the listeners, had a difficult time deciding between voiceless stops in

/s/-clusters and their voiced counterparts. These account for almost 90% of the cases

in which alternative choices were given. One of the readers supplied tied candidates

for first choice for over half of the tokens. In 70% of these cases the alternatives were

between a syllable-initial voiced stop and the corresponding syllable-initial /s/-voiceless

stop cluster. The remaining 30% differed in the location of the syllable boundary ,r in

the identity of the fricative. Not knowing how to score the ties, the reader was credited as

having correctly identified the stop if either of the choices was correct. Admittedly, this

boosted the score for that reader. If only half of the tied tokens were scored as correct.

the reader's identification rate drops by roughly 15% for the top candidate. I
Although there was a difference in listener perception of /s/-clusters, I was unable to

I
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determine whether or not listeners were able to determine if a stop was in a cluster. In

order to address this issue, the readers were asked to specify a boundary before or after

the fricative whenever they could. Readers assigned a syllable boundary location 88% of

the time. They correctly placed the boundary location in 73% of their attempts. Readers

were most accurate (87% correct) at placing a syllable boundary before voiceless stoDs

* that were not in a cluster with the preceding fricative.

4.3.3 Task 3: Spectrogram reader's identification of syllable-initial stop-

semivowel clusters and affricates

U Since only one subject read the spectrograms of affricates and syllable-initial stops in

semivowel clusters, the confusion matrix in Table 4.4 is rather sparse. The types of

errors, however, were similar to those observed for the listeners. Alveolar stops had the
largest error rate (over 50%), being confused primarily with the affricates. /dr/ was

labelled as /I/ more frequently than it was correctly identified. The affricates were more
likely to be confused with each other, than to be called alveolar stops.I
Table 4.4: Confusion matrix for spectrogram reader's identification of syllable-initial3 stops in clusters with semivowels and of syllable-initial affricates.

AnwrNumber IPercent 11 Reader's response
I Answer oftokens correct

b 7 100.0 7 1
d 6 33.3 2 1 3

3 66.7
p 4 75.0 1 3
t 9 66.7 1 6 1 1
k 7 85.7 1 6
__ 7 71.4 1 -513 8 75.0 2 16

I
4.3.4 Task 4: Spectrogram readers' identification of non-syllable-initial stops

I Since only one subject read the spectrograms of affricates and syllable-initial stops in

semivowel clusters, the confusion matrix in Table 4.4 is rather sparse. The types of
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errors, however, were similar to those observed for the listeners. Alveolar stops had the

largest error rate (over 50%), being confused primarily with the affricates. /dr/ was

labelled as /I/ more frequently than it was correctly identified. The affricates were more
likely to be confused with each other, than to be called alveolar stops.

Table 4.5: Confusion matrix for spectrogram readers' identification of non-syllable-initial
singleton stops.

Number Percent Readers' response
Answer of tokens correct b d Fp I[ t I kI

b 12 66.7 8 1 3
d 25 68.0 1 17 7

11 81.8 1 9 1
p 36 72.2 5 3 2 26
t 35 71.4 7 1 1 25 1
k 34 76.5 1 4 3 26

A confusion matrix of the readers' responses for task 4 is given in Table 4.5. Readers
identified non-syllable-initial singleton stops about 5% less accurately than syllable-initial
singleton stops. This difference was smaller than the 12% decrease due to syllable position

observed for the listeners. Why is this so? The listeners had a particularly hard time

identifying /t/ (as can be seen in Table B.4), ii problem that readers do not seem to

have. For example, even though only 23% of the tokens for /t/ were heard as all correct,

readers correctly identified 71% of the /t/'s.

With the exception of /9/, readers identified voiceless stops better than voiced stops.

This was in contrast to the listeners, who identified voiced stops more accurately by
almost 15%. It appears that readers may simply have made more errors on both voiced

and voiceless, and that on the remaining tokens there were enough voicing cues present
for the readers to correctly deduce voicing. With the exception of /t/, readers identified

all stops less accurately than listeners.

4.3.5 Task 5: Spectrogram reader's identification of non-syllable-initial stops

in homorganic nasal clusters

Table 4.6 is a confusion matrix for the spectrogram reader's identification of non-syllable-

initial stops in homorganic nasal clusters. The reader who participated in experiment
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IV had an overall improvement of 8% from task 4 to task 5. This was the same amount

of improvement observed for the listeners. While the reader identified voiceless stops
perfectly, listeners made more errors on voiceless stops. The reader made the most errors

for /d/; the accuracy for /d/ was only 47%. Most of /d/'s that were confused with /t/

had a weak (or non-existent) nasal murmur in the spectrogram. Since the same reader

correctly identified 87.5% of singleton non-initial /d/'s, I suspect that he used a different

strategy for this task, weighing the importance of the nasal murmur very highly. If a
strong nasal murmur was not present, the reader called the stop voiceless.

Table 4.6: Confusion matrix for spectrogram reader's identification of non-syllable-initial
stops in homorganic nasal-stop clusters.

I Number Percent ll eader's response
Answer of tokens correct rb-F dlgp I t k

b 4 75.0 3 1
d 17 47.1 3 8 6
p 8 100.0 8
t 15 100.0 15
k 2 100.0 2

I
4.4 Other factors

Spectrogram readers identified singleton stops less accurately in reduced syllables than

in syllables that were not reduced, as shown in Figure 4.5. Tasks 3 and 5 had insufficient

tokens of reduced vowels to make the comparison and in task 2 the differences are small.

Figure 4.6 shows the stop identification accuracy of spectrogram readers as a function

of the place of articulation and of the voicing characteristic of the stop. In syllable-

initial position, labial stops had the highest identification rate. Labial stops may be

easiest to identify, as they are typically weak and have a release that is spread across

all frequencies. For the non-initial stops, velars were identified most accurately. The

compactness of velars may b- a strong cue to their identification. As shown in Figure
4.6, voiceless stops were always identified more accurately than voiced stops. The largest

differences occurred for tasks 2 and 5.

I
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Figure 4.5: Readers' identification accuracy of stops as a function of the stress of the
right vowel and the left vowel.
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Figure 4.6: Readers' identification accuracy of stops as a function of the place of articu-
lation and voicing characteristic of the stop.

Figure 4.7 shows the effects of sex and database on spectrogram-reader identification of1

stops. In all tasks, female talkers were identified better than male talkers. The difference,1

I
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I Figure 4.7: Readers' identification accuracy of stops as a function of the sex of the speaker
and the database of the token.I
ranging from 1% in task 2.to 10% for task 3, is larger than the 1% difference observed for

listeners. Tokens from IC were identified better than tokens from TIMIT in three of the
tasks.3 Listeners consistently identified IC tokens .slightly better than TIMIT tokens.

I Some of the spectrogram readers' confusions on the singleton syllable-initial stops can
be explained by the acoustic similarities predictable from the phonetic context. Simple

acoustic-tube models can be used to illustrate the similarities due to coarticulation.
These errors include: labial -- alveolar preceding front vowels, where there may be high3 frequency energy in the release due to anticipatory coarticulation; labial-velar confusions

preceding back vowels, where the energy concentration for both labials and velars is

at low frequencies, near F2 of the vowel; and alveolar-velar confusions preceding front
vowels, as front velars are produced with a front cavity whose length is between that of

back velars and of alveolars (Fant, 1960 [p. 187]). Although there were too few listener

errors to correlate vowel context with the place errors, similar trends were observed.
3 The differences were not simply due to the percent of tokens from each corpus that were AC. IC

always had a larger percentage of AC tokens than did TIMIT. The strongest counter-example occurred
for task 4, where TIMIT tokens were better identified than IC tokens. Only 27% of the TIMIT tokens
were AC, whereas 47% of the IC tokens were AC.

I
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4.5 Discussion

Previous spectrogram reading experiments: The results reported here are com-

parable to previously published data (Bush, Kopec, and Zue, 1983; Cole and Zue, 1980).

The closest evaluation was reported by Bush, Kopec and Zue (1983). One spectrogram

reader read a total of 216 word-initial stops. The stops were spoken by 6 speakers (3 malei

and 3 female) and occurred before the six vowels /i,eY,a,a,o,u/, recorded in the phrase
"- is the word." The top choice accuracy was 79%, and accuracy for the top two choices

was 91%. For the singleton, syllable-initial stops in this set of experiments, the same sub-

ject had a top choice accuracy of 82% and a top two accuracy of 93% (on the balanced

set).4 Thus, comparable performance by the same subject on a more varied task has

been demonstrated. In fact, these experiments show that multiple spectrogram readers

have somewhat comparable performance across a much larger set of speakers, phonemic

environments and stress conditions. However, the conditions of the experiments were not
the same and the spectrograms in the present experiment may provide more information.

The speech samples in Bush et al. were lowpass filtered at 5 kHz while the speech in this

experiment had a bandwidth of 8 kHz. In addition, these spectrograms were augmented

by zero crossing rate, low frequency energy and total energy contours.

Cole and Zue (1980) reported on the labeling of 23 utterances spoken by two male talkers. i
An overall top-three candidate labeling accuracy of 85% (67% top choice only) agreement

of the spectrogram reader with any one of three phoneticians was obtained. The inter-

transcriber agreement was also found to be 85%. Zue's accuracy (top three candidates)

on stops was 90% in word-initial position and 77% in word-medial position (see Cole and

Zue (1980), Table 1.4). It is difficult to compare the results directly, as the phonetic
contexts of the stops were not specified.

Performance relative to listeners: The spectrogram reader results were correlated
with the listeners' performance. As expected, readers labeled AC tokens more accurately

than they labeled SE tokens. The probability of all readers correctly identifying the

stop ranged from 0.76 to 0.90 when the stop was AC and from 0.68 to 0.74 when the
stop was SE. Figure 4.8 shows the accuracy for readers as a function of the accuracy for

4The same reader had a top choice accuracy of 77% and top 2 accuracy of 91% for all the tokens. The i
performance on the balanced set, instead of all tokens, is used for the tmparison because the listener
identification accuracy of 96% is closest to the 98.6% listener accuracy in B,;qh et al. (1983).
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I Figure 4.8: Readers' accuracy as function of listeners' accuracy.I
listeners in the form of a three-dimensional histogram. There are only three values on

the reader axis: 0%, 50% and 100%. This is because each token was read by at mr ..

two readers. Most tokens were read and heard correctly. The tokens that were rei'd

incorrectly often were heard incorrectly too. The errors made by the readers agreed with

at least some listener in about 70% of the cases. The tendency for readers to make errors

similar to those made by listeners suggests that spectrogram readers may be extracting

perceptually relevant information when performing the labeling task.

Thirty-five of the tokens were misread even though they were heard without error. These

are of particular interest, as they point out where our spectrogram reading knowledge

is lacking. In 22 of the cases the reade-'s top choice was reasonable, meaning that even

knowing the answer, I might consider the readers choice best. (In all but 5 cases, I

considered the reader's top choice a possible top candidate.) For the 13 voicing errors,

the stop tended to have conflicting cues, such as a VOT that was long for a voiced

stop, but there was no aspiration or prevoicing. (I think that 2 of the 13 voicing errors

may have been oversights on the part of the reader.) The 22 place errors also occurred

on tokens where there was conflicting information. Typically the burst characteristics

and formant transitions appeared to be incompatible. The readers proposed the correct

answer as a second choice for 19 of the tokens.
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Why was the performance of the spectrogram readers consistently worse than that of the

listeners? There are several possibilities including the spectrographic representation, our

inability to identify and locate acoustic attributes in the spectrogram, and our inability

to deduce the phonemes from the attributes. The relative importance of these factors is

difficult to assess.

Readers were worse at identifying place of articulation than were listeners. Listeners

always had 98% or better place identification. This difference may be partially due

to differences in the way in which the speech signal -is processed; the spectrographic

analysis does not model the processing of the human auditory system. Although many

aspects of human audition are not understood, some models incorporating properties

of the auditory system have been developed (Lyon, 1984; Allen, 1985; Goldhor, 1985;

Cohen, 1986; Seneff, 1988). The models incorporate some of the known properties such

as critical-band filtering, half-wave rectification, adaptation, saturation, forward masking,

spontaneous response and synchrony detection.

Perhaps an auditory-based representation can help the readers distinguish place of artic-

ulation. Figure 4.9 shows a conventional spectrogram and a spectrogram of the output of

a model of the human auditory system (Seneff, 1988) for two tokens. The spectrograms

on the left are the same wide-band spectrograms as have been used throughout. The

spectrog tms on the right are "synchrony" spectrograms. The time axes for the two

are the same; but, the synchrony spectrogram is displayed on a Bark frequency scale.

Spectrogram readers made place errors on both of the tokens. The stop in the spectro-

gram in part (a) of /ubi/ was identified as /d/ by both spectrogram readers. Two of the

29 listeners also identified it as /d/, but the remaining 27 correctly called it /b/. The

readers described the burst as "kind of weak for a /d/" but thought the formants were

"better for a /d/ than for a /b/." Since the readers did not know the identity of the

vowel, it is possible that they thought the falling F 2 in the /i/ (due to coarticulation

with an /1/ and cued by the rising F 3) was an /u/, with F 2 raised due to coarticulation

with the /d/. The synchrony spectrogram on the right accentuates the falling formant

transitions, particularly into the stop from the right, supplying evidence of the labial

articulation.

A spectrogram of /ode/ is shown in part (b). For this token, the two spectrogram readers

thought that "the release looked labial" but "the formant transitions looked alveolar"

and decided the stop was a /b/. 1 ,enty-eight of the 29 listeners correctly identified the
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Figure 4.9: Wide-band and synchrony spectrogramns of /ubi/ and /ode/.
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stop as /b/, with one listener calling the stop /p/. The synchrony spectrogram shown on

the right enhances the weak, high frequency energy circled on the left, making the stop

appear "more alveolar." The formant transitions in the synchrony spectrogram can be

seen more clearly and are not falling into the stop as would be expected for a labial. •

Table 4.7: Spectrogram readers' accuracy for all tokens, balanced subset, and extra I
subset. Top: top choice correct, Top 2: correct answer in the top two choices, L: Listeners'
top choice identification of the same set of tokens.

Percent correct
Task All tokens = Balanced set(B) Extra tokens(X)

Number Top Top 2 L Top Top 2 L 11 Top Top 2 L

1- 78 87 91 84 91 96 70 82 87
2 82 90 82 85 90 88 77 90 68
3 73 77 86 77 81 93 68 72 79
4 73 88 83 68 86 88 77 90 79

5 78 93 90 79 96 97 77 91 83

I
B versus X: The identification scores, averaged over all readers, are given in Table

4.7. Results are given for all tokens and for the B and X subsets separately. Reader I
accuracy was higher on the B tokens than on the X tokens. The lower accuracy for the X

tokens was expected as they were heavily weighted with tokens on which listeners made

errors (see Table A.1). I
Alternate choices: Table 4.7 also includes scores for the top choice only and for

the correct answer in the top two choices. For comparison, listener identification of the

token subset is also provided. A ith the exception of task 2, the readers' accuracy was at

least 10% lower than listeners' for all conditions. If the top two choices are considered.

the readers' ability was closer to that of listeners'. In fact, for three of the five tasks,

the readers' top two choice accuracy was better than the listeners' accuracy. Usually

the choices differed in either place or voicing, but not both, so a correct partial feature I
specification could be provided by considering both alternatives. The second choices were

almost evenly divided between place and voicing, with the exception of task 3. In task 3

their indecision was between affricates and alveolar stops.

I
82



m
Chapter 4. Spectrogram Reading Experiments

m Table 4.8: Readers' responses when alternative choices were supplied.

mNumber of 1st choice % correct
Task multiple choices correct (%) in top 2 comment

1 99 63 86 50% unsure of voicing
2 58 78 91 91% unsure of voicing
3 10 70 80 40% unsure of voicing,

40% alveolar-affricate
4 102 80 93 64% unsure of voicing
5 20 65 100 75% unsure of voicing

Table 4.8 shows the number of cases in which readers supplied an alternate choice. Some
readers provided alternate choices frequently, while others hardly ever gave them. In over
63% of these cases the top choice was correct. Except for task 3, the "top 2" accuracy
was almost 90%.

The alternate choices reflect the readers' indecision. When only one choice was given,3 the readers' accuracy was 85%. When multiple choices were given the readers' top choice
accuracy was 67.5%. That the readers' top choice accuracy was almost 20% better when
only one choice was supplied than when multiple labels were provided indicates that

readers often knew when they were uncertain. The improvement in accuracy obtained
by including the second choices also shows that readers often knew which feature was
uncertain.

I Best reader results: It can be argued that the spectrogram readers have been
penalized by presenting an average score, rather than the best score. While it was
convenient to use all the responses for the error analysis, that may not be the fairest
comparison between the readers and the listeners. As mentioned earlier, the spectrogram
readers have had varying amounts of experience. One possibility is to compare the score
for the best reader to the average score for the listeners. (All listeners are assumed to
be "experts," with years of practice and hence their performance should be the same.)
Since different readers participated in each experiment, the best reader for each task was
independently chosen to be the reader with the highest top choice accuracy. In Figure

4.10 the scores for the best reader are shown relative to the averaged scores for the readers
and the listeners scores on the balanced set of tokens. In tasks 1 and 4 the differences
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Figure 4.10: Comparison of the accuracy of the best reader and the average listener for
tasks 1, 2, and 4 on the B tokens.

between the best reader's score and the average readers' score were on the order of 12%

and 7% respectively. Thus, using the best readers' score effectively halves the difference

in accuracies between listeners and readers.

Phonemic transcription: Throughout this discussion, the readers' results have been

presented relative to the listeners' results. In all cases, the error rates were computed

based on a comparison with the phonetic transcription of the stop. Since the phonetic

transcription is subjective and may be prone to errors, some of the "errors" made by

spectrogram readers and listeners may not really be errors. As an example, Figure 4.11

shows spectrograms of two tokens that were heard and read differently from how they

were transcribed. The token in part (a) is a syllable-initial /d/ that was called /t/ by

all 29 listeners and the one reader. The /t/ in part (b) was called /d/ by 19 of the

20 listeners and the one reader. These examples illustrate cases where the phonemic

transcription of the stop may not agree with its phonetic realization.

Spectrogram readers' use of acoustic attributes: While I can not definitively

conclude what spectrogram readers are doing when they read a spectrogram, I can deter-

mine some of the important acoustic attributes and, to a limited degree, infer how they
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Figure 4.11: Spectrograms of (a) /ido/ and (b) /iti/.

I
are used. My inferences are based on the markings and comments made on the spectro-

gram by the readers, discussion of the labels with the readers,. and by introspection.

Spectrogram readers tend to decide voicing and place of articulation independently. The

acoustic attributes used for voicing are primarily the VOT, the presence or absence of

aspiration, and the presence or absence of prevoicing during closure. For syllable-initial3 stops (not in /s/-clusters), VOT seems to be the most important cue. However, in notic-

ing whether or not the VOT is short or long, readers are probably also determining3 whether or not the stop is aspirated, and using that information simultaneously. When

the VOT is medium, readers check for aspiration, and then for prevoicing. If the stop3 'is clearly aspirated, readers are generally willing to ignore prevoicing. When readers are

uncertain about the aspiration, they weigh prevoicing more heavily- if there is prevoic-

ing, then the stop is more likely to be voiced than voiceless. Readers write comments
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(a) ll/1 (b)/odo/
Figure 4.12: Spectrograms with conflicting information for voicing.!

like "VOT medium, is this aspiration? - voicing hard to tell" on their spectrograms.I

They also sometimes circle prevoicing to indicate they used that cue in forming their
decision. Two examples with conflicting voicing information are shown in Figure 4.12.I

The reader circled prevoicing during the closure interval of both tokens. In part (a)
the stop is clearly aspirated, and the spectrogram reader weighed that information moreI

importantly, correctly identifying the stop as a /p/. Since this reader was particularly

conservative, he also proposed a /b/ as a second choice. The stop in the spectrogram ofn

part (b) has strong prevoicing throughout the closure. The stop has a medium VOT and

it is unclear whether or not it is slightly aspirated. The strength of the prevoicing allowed
the reader to correctly determine the voicing. Readers were also able to adapt for theI

longer VOT for stops in semivowel clusters. The readers (and the listeners) had a hard
time deciding voicing for stops in clusters with /s/ and for voiced stops preceded by/Is/.I

In non- syllable- initial position readers know that the VOT is not as reliable an indicator
86J
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of voicing. As such, they tend to pay more attention to aspiration and prevoicing.

I1 t- L0 4 0

I !Z P"1"MR1LMLIZ0H 3h o 5 I

I It~ 4

I4 0.3 .1 : .3 0.4 0.5

(a) /ig / (b) /idw/ (c) /okra/
Figure 4.13: Spectrograms with conflicting place information.

From the markings made on the spectrograms by readers, I concluded that they primarily
use the frequency location and distribution of the burst, the burst strength, and the for-

mant transitions to determine the place of articulation of the stop. These three sources

of information may either be confirmatory or contradictory. When they are confirma-

tory, such as for a labial stop that has a weak, diffuse release falling formant transit-ions,

readers are fairly confident in their label. When the information is contradictory, read-

ers are uncertain and tend to weigh one or two factors more heavily, disregarding the

contradictory information. Three examples with conflicting information are shown in

Figure 4.13. The stop in part (a) is a /9/, the second candidate given by the reader. The

readers arrows indicate that he liked the release best as alveolar and the formant motion

on the left as velar. In this case, the reader favored the burst location over the formants

and misidentified the stop. In part (b) the same reader faced the same contradictory
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information. Here the reader once again favored the burst location over the formants,

and this time was correct. Knowing the correct answer, it can be argued that although
the bursts for both stops look quite similar, the energy distribution for the /g/ is slightly

more compact than for the /d/, and the motion of F2 and F3 are also better for the 3
/g/.' For the spectrogram in (c), the reader saw conflicting information between labial
and velar. The formant transitions on the-left favor labial over velar, but the burst has 3
a compact component, as circled, that is more like a velar. The reader decided that the

formant motion and the diffuseness of the burst favored labial over velar. My suspicion

is that the reader did not realize that the left vowel was an /o/ which could account for

the formant transitions.

Interpreting the spectrogram readers' decisions has helped in designing the rules for the
knowledge-based implementation. I discussed with each reader all of the errors that s/he

made. In about 50% of the cases I agreed with the readers decision, even though I had the
knowledge of what the correct answer was. In the remaining 50% 1 could almost always

understand the error that the reader made, but knowing the answer, I could argue why
the correct answer should have been considered best. In less than 2% of the cases was
the error made by the reader "unreasonable."

4.6 Summary I

These experiments were performed in order to assess human spectrogram readers' ability I
to label stops in limited phonetic environments. They also represent an effort to better

understand some of the factors involved in spectrogram reading. They will serve as a I
performance measure in evaluating the knowledge-based system discussed in Chapter 5
and to determine which acoustic attributes are the most salient. The markings and com- -
ments provided by the readers were helpful in understanding which acoustic attributes
are used, and how much weight they are given. 3
These spectrogram reading experiments indicate that:

'Since amplitude information is not particularly well captured in the spectrogram, the compactness
of the release may be difficult to assess. 3
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* Spectrogram readers were able to label stop consonants across a large number of
speakers and many phonemic environments with only a limited phonetic context.

The accuracy is consistent with other reported studies.

* On the average, listeners were able to identify stops 10-15% more accurately than

n the spectrogram readers. The difference in accuracy may be due to our incomplete

knowledge of how to detect acoustic attributes in the spectrogram and how to use

the attributes to form phonetic hypotheses, and in part due to inadequacies in the

spectrographic representation.

e Comparing the performance of the best reader, instead of the average reader, to

the average listener halves the difference in error rate.

3 e Syllable position and additional consonants affected the readers' ability. Singleton

stops were better identified in syllable-initial position. Initial stops preceded by /s/I or /z/ had a slightly higher voicing error rate than did singleton stops. In non-initial

position, stops in homorganic nasal clusters were identified better than singleton

stops. Spectrogram readers confused the clusters /dr,tr/ with the affricates /T,/.
These trends are the same as were observed for the listeners.

e Other factors such as stress, sex and database may be important, although the

effects were hard to assess with the limited amount of data. However, singleton3 stops in reduced syllables were identified less accurately than those in unreduced

syllables.

e Some of the place errors for the singleton, syllable-initial stops are predictable from

the vowel context.

I
I
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Chapter 5

Knowledge-based Implementation

Spectrogram reading entails the identification of acoustic attributes in the image, and the
forming of phonetic judgements based on these attributes using our knowledge of acoustic

phonetics and the articulation of speech. One must selectively attend to many different
acoustic cues, interpret their significance in light of other evidence, and make inferences
based on information from multiple sources. While it is impossible to know what the

expert spectrogram reader is thinking as the spectrogram is interpreted, it appears that

much of the knowledge can be expressed as rules. In this chapter an implementation of 3
a rule-based system for stop identification is discussed. The implementation attempts to

incorporate the knowledge used by experts in both the acoustic attributes used to describe
the spectrogram and in the rules which deduce phones from these acoustic attributes. A

knowledge-based system appears to be a natural medium within which to incorporate the 3
knowledge. While heuristically-based systems for speech recognition have been developed
before (Weinstein et al., 1975; Woods et al., 1976; Erman and Lesser, 1980; Espy-Wilson,

1987), using an organized framework provided by a knowledge-based system shell may

make the problem more tractable. This choice provides a means of understanding how I
the attributes and rules interact and how the system arrives at its decisions.

The remainder of this chapter is organized as follows. First a brief discussion of knowledge-

based systems is provided, followed by related work with expert systems based on spec-

trogram reading. Next the process of knowledge acquisition and the representation are

described. A des,,ription of the qualitative acoustic attributes and the rules is given, I
followed by a discussion of the control strategy and an example of identifying a stop.

The remaining sections discuss scoring issues and an evaluation of the system. I
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5.1 Background

The development of a knowledge-based system requires the existence of a lot of domain-

specific knowledge and an expert that can solve the problem. While there are still

many unresolved questions in the production and perception of speech, a great wealth

of knowledge exists. The domain knowledge includes our understanding of articulatory

principles, acoustic phonetics, and phonotactics. Past spectrogram reading experiments3 and those presented in the last chapter suggest that there are humans who qualify as

experts. The expert must also be able to explain his/her reasoning process, as the3 reasoning can only be modeled indirectly on observation of the expert's own descriptions

of his/her actions.

U The reasoning used in spectrogram reading tends to be qualitative in nature. Qualitative

reasoning is difficult to capture in statistically-based systems (Lesser et al., 1975; Jelinek,3 1976; Medress, 1980). Acoustic events are either present or absent, often extend over

both time and frequency, and may occur simultaneously. Researchers have argued that

* such acoustic events are hard to capture in systems which perform a frame-by-frame time

analysis of the speech signal (Roucos and Dunham, 1987). In order to have the computer

mimic the reasoning of spectrogram readers, one needs a system that can deal with

qualitative measures in a meaningful way. Knowledge-based systems seem to provide
*this capability.

3 5.1.1 Knowledge-based systems

Artificial intelligence (Al), as the name implies, is an effort to develop machines or pro-

grams that exhibit what would be called "intelligent behavior" if observed in a human.

Research in Al has resulted in the development of, among other applications, expert3 systems. The term "expert systems" (or "knowledge-based systems") describes pro-

grams that solve problems by relying on knowledge about the problem domain and on

Smethods that human experts employ. For discussions on expert systems and knowledge-

based systems see, for example, Duda and Gaschnig, 1981; Hayes-Roth et al., (1983),3 Buchanan and Shortliffe (1984), Waterman(1986), Grimson and Patil (1987). In solv-

ing problems, the experts use knowledge derived from basic principles anc knowledge

which they have acquired from experience. Perhaps the most important characteristics
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of human experts are the ability to explain their conclusions, to assess the reliability of

their conclusions, and to generalize their knowledge. Experts integrate multiple sources

of information and often reason about qualitative data. The goal of many researchers

in the expert/knowledge-based systems field is to develop programs modeled on human 3
cognitive behavior.

A knowledge-based system explicitly separates problem solving strategies and the domaini

knowledge. The domain knowledge is usually expressed in a set of statements and/or

principles. A typical system consists of a general inference engine and a database that

is specific to a particular task. The inference engine keeps track of current hypotheses,

applicable rules, and a history of rules that have already been applied. Knowledge-based 3
systems often have multiple levels of abstraction making them easy to use and modify

(Hayes-Roth, 1984). Much of the processing is symbolic rather than numeric. 3
In rule-based systems, a subset of knowledge-based systems, the conclusion is based on

the results of a set of if-then-else rules, operating on some input data or initial conditions. 3
Two control strategies are widely used: forward chaining and backward chaining. For-
ward chaining (or data-directed reasoning) is reasoning from facts to form conclusions. 3
Backward chaining (or goal-directed reasoning) is reasoning from a desired conclusion

backward to the required facts. Some systems integrate both mechanisms (Waterman 3
and Hayes-Roth, 1978). Some systems attempt to reason under uncertainty, to deal with

qualitative information, and to combine different sources of information in meaningful

ways (Kanal and Lemmer, 1986). Some systems can deal with partial andiur conflict-

ing information and can handle multiple hypotheses (Pauker et al., 1976). While still

an active area of research, knowledge-based systems have been applied to a variety of
applications including medical diagnosis (Szolovitz, 1982; Clancey and Shortliffe, 1984).

business (Winston and Prendergast, 1985), mineral exploration (Duda et al., 1981) and i

others (Davis et al., 1977; Gaschnig, 1982; McDermott, 1982; Miller et al., 1982).

Perhaps the most important reason for using a knowledge-based system is that the knowl- I
edge is represented explicitly in the facts and the rules. The user can ask the system to

explain the reasoning used to obtain its answer, providing a way to evaluate the rules 3
and to understand interactions among them. In addition, interactively working with the

system may help elucidate the reasoning used by human experts. 3

9
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5.1.2 Related work

There have been several attempts to design speech recognizers that model spectrogram

reading over the past five years. In this section a brief summary of these attempts

is provided in chronological order. Some of the systems have been implemented and

evaluated, while others were just proposed.

Johanssen et al. (1983) proposed an automatic speech recognition system based on spec-
trogram reading. Their proposed system, SPEX (spectrogram expert), consisted of three

interacting experts: a visual reasoning expert that identifies important visual features in

the spectrogram, providing a symbolic description of the utterance; an acoustic-phonetic
expert that reasons about how visual features relate to phonemes; and a phonetics expert

that reasons about allowable phoneme sequences and produces an English spelling from

a string of phonemes.

I Another project was reported by Johnson et al. (1984). A knowledge-based system,

implemented in Prolog, had rules to capture the relationship between acoustic events as3 represented in the spectrogram and linguistic units, such as phonemes. Features from

the spectrogram were manually caricatured for each "area," (where it is assumed that
S"area" refers to some manually defined acoustic segment) and supplied to the system.

The system was tested on twenty sentences spoken by two male and two female speakers.

I 63% of the phonemes were correctly identified, 21% missed, and 16% confused with other

phonemes. The authors reported that they expect the system performance to improve

as the rules are refined and that they were encouraged by the system's high ability to

discriminate natural classes.

3 Carbonell et al. (1986) have implemented a system, APHODEX (acoustic phonetic
decoding expert), for reading French spectrograms. (See also Carbonell et al., 1984;

Haton and Damestoy, 1985.) A set of pre-processors performed a coarse segmentation

of the acoustic signal and classified the segments as vowels, plosives, or fricatives, The

output of the preprocessors was stored in a "fact base" associated with each segment.

A set of inference rules attached a label, or list of labels, to each segment and may
have refined the original segmentation. The inference engine analyzed the segments in3 a an utterance from left-to-right, using both forward and backward chaining. Only rules

applicable to the phonetic class of the segment were applied. Backward chaining was used

I
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when the identity of a segment was conditioned by the phonetic nature of its right-side

context.

Knowledge was stored in the APHODEX database using frames. Frames (Minsky, 1975)

are data structures for representing stereotyped situations in which features of an object

are associated with slots and slot-values. Two types of frames were used during recog-

nition: pcototypes and instances. Prototypes associated phonetic units with a set of

expected acoustic characteristics defined in advance by the system designer. Instances

were segments of the utterance created during recognition. The slots of the instances

were filled in by the rules. An instance was identified by comparing it to all prototypes

in its class, and choosing the prototype that matched it best. The authors note that

at the time of writing the knowledge base had 200 rules. However, no evaluation was

reported.

As part of his doctoral research, Stern developed an expert system to identify a subset

of French sounds (Stern, 1986; Stern et al.. 1986). The aim was to formalize and test

the knowledge used in spectrogram reading. The knowledge was formalized in a set

of production rules for acoustic, phonetic, and phonotact:c information. The acoustic

knowledge was encoded in rules of the form:

If feature description and context
then weighted phonetic subset or phoneme.

Phonotactic information was used to suggest hypotheses and to reduce the search space.

The phonetic knowledge was integrated in a phonetic network representing the phonetic
relationships between classes. A forward chaining inference engine, implemented in Pro-

log, used a "global progressive" control strategy with MYCIN-like confidences (Shortliffe.

1976), where "global" means that contextual information was used when needed.

A manual segmentation of the acoustic signal into phones and a description of the acous-

tic events for each segment were provided as input to the system. The system was 3
evaluated on a test set of 100 French sentences, spoken by one male speaker. Each

sentence included expressions made up from 13 phonemes, representing the "classical"

manner of articulation phonetic classes. The test sentences were described to the system

by graduate students who were unfamiliar with the details of the project. The system

had an 83% top choice accuracy (including ties) and 94% accuracy for any position. The
authors were encouraged by their results, both in terms of having developed a tool to
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collect and evaluate acoustic-phonetic knowledge, and in the phoneme class recognition
accuracy obtained.

3 While the previous attempts at building expert systems based on spectrogram reading

have met with some success, I have reservations about the way in which the knowledge

has been represented. Examples of the rules used in Johnson et al. (1984) and Stern et

al. (1986) are quite specific with regard to the acoustic characteristics, such as numerical
values for the formant frequency locations or frequency distributions of energy. I believe

that the transformation from numerical measurements to qualitative descriptions should

be separated from the inferences relating the acoustic characteristics to the phonemes. In

addition, phonetic features, rather than phonemes should be deduced. This would enable

the knowledge to be expressed more succinctly and to exploit the acoustic characteristics

* that phonemes with a given feature have in common.

1 5.1.3 Selection of a knowledge-based system shell

This research has focused on the acquisition and formalization of the knowledge base.

rather than the development of a knowledge-based system, or shell, itself. As a result.3 existing technology has been used to implement a system for stop identification.

An initial implementation (Zue and Lamel, 1986) of a knowledge-base and a set of rules for

stop identification used an available MYCIN-based (Shortliffe, 1975), backward-chaining

system. Acoustic measurements were provided semi-automatically to the system and3 converted to qualitative descriptions. Rules related the qualitative descriptions to pho-

netic features, which were then mapped to phonemes. Beliefs (also called confidences,
weights, or certainty factors) in the preconditions reflected uncertainty in the acoustic

descriptions. Strengths in the rule conclusions reflected how strongly a given acoustic

description indicated a phonetic feature. The MYCIN-based system had a very simple

goal-directed control strategy. It set off to determine the identity of the stop, and in the

process pirsued the subgoals of deducing the voicing and place characteristics of the stop.

In each case, the system exhaustively fired all pertinent rules. The control strategy could
be modified somewhat by including preconditions to inhibit certain rules from firing.

The system (SS-1) was evaluated on 400 word-initial, intervocalic stops extracted from

continuous speech. Table 5.1 compares the system performance to the performance of
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Table 5.1: Comparison of human and SS-1 system identification performance.

Number Top To Tpcondition of tokens choice(%) choice(%)

set 1 human(2) 200 90 92
system 100 88 95

set 2 human(3) 200 92 96
system 100 84 92

set 3 system 200 83 94

human spectrogram readers on two sets of 100 stops. The averaged human performance

of 2 and 3 readers is given, for sets 1 and 2, respectively. The tokens in set 1 were

also used to tune the system. System tuning involved setting the thresholds for the

mapping functions, and refining the selected acoustic descriptions and the rules. For set

1, the system's performance was comparable to that of the experts. The performance

of the system degraded by 4% when it was confronted with new data (set 2), whereas

the experts' performance remained high. The degradation of performance from tuning
to test data was attributed primarily to the "lack of experience" of the system; it had

not learned all the acoustic descriptions and rules used by the experts. The system had

comparable performance on another test set of 200 samples (set 3).

If performance in terms of recognition accuracy was the main objective, the SS-1 system

may have been acceptable. However, an important objective of this research was to

develop a system that models the problem-solving procedures used by human experts,

something that the SS-1 system did not do very well. This was partly due to limitations
imposed by the structure of the MYCIN-based system. The goal-directed inferencing of

MYCIN did not enable the system to evaluate multiple hypothesis at any given time. In

contrast, experts tend to use forward induction, and to simultaneously consider a set of

possible candidates, although they may use goal-directed reasoning to confirm or rule out

candidates. Since there is redundancy in the acoustic characteristics for a given phonetic

feature, often only a subset of acoustic characteristics are needed to specify it. The goal-

directed control structure of MYCIN always exhaustively fires all rules, while experts

may quit when they have enough evidence for a feature. Other problems occurred with

representing our knowledge in MYCIN's data structure, the "context-tree." The MYCIN
system did not allow nodes at the same level of the context-tree to share information,
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which made it difficult to model coarticulatory effects. As a result, it would have been

difficult to increase the capabilities of the system to identify stops in other-environments,

such as consonant clusters.

Our experience with the SS-1 system indicated the need for a control strategy which3 better models the reasoning of spectrogram readers. The expert system shell ART,

a commercial product developed by Inference Co., was selected because it integrates

forward and backward reasoning, allows hypothetical reasoning and has "schemata" data-

structures which provide frame-like capabilities. In addition, ART can be augmented to

handle confidences in the preconditions and conclusions.

I 5.2 Knowledge acquisition

The knowledge incorporated in the implementation was obtained primarily by observ-
ing others reading spectrograms, by reading spectrograms myself, and by introspection.

Using knowledge about the articulation of speech (and of stop consonants in particular)

as a foundation, spectrograms of stop consonants were studied in an attempt to define

acoustic correlates of their place of articulation and voicing characteristic. I also tried to

determine how the acoustic evidence was weighed and combined in reaching a decision.

The knowledge was tested by identifying unknown stop consonants in a limited context,3 as used in the listening and spectrogram reading experiments of Chapters 3 and 4. Try-

ing to understand the errors that I made, led to changes and refinements in the decision3 strategy and to the inclusion of additional acoustic attributes.

Over the extent of this thesis work, I was also fortunate to be involved in attending

I and leading several spectrogram reading groups. Spectrogram reading sessions provide
a unique opportunity to gather knowledge. All readers participate in the interpretation3 of the spectrogram, generally taking turns at identifying one or a few segments. When

leading sessions of beginning spectrogram readers, we usually try to have them identify

easy sounds first (such as strong fricatives, /r/'s, and other sounds with easily recognized

acoustic correlates), leaving the more difficult interpretations until the end, when more

contextual constraints can be applied. As the spectrogram readers gain experience, the

spectrogram tends to be read from left-to-right, occasionally skipping over and returning

to difficult regions. At his/her turn, each reader proposes a label or sequence of labels
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for the region, and provides an explanation for his/her decision. When other readers I
disagree, there can be extensive discussion as to possible consistent interpretations. At
the sessions, particular attention was paid to the acoustic attributes used by the readers
and to the reasons they gave to justify their interpretation. Some of the sessions were 3
tape recorded for further analysis.

Additional knowledge came from the spectrogram reading experiments discussed in Chap- -
ter 4 and from system development. By analyzing the errors made by the expert spec-

trogram readers, I was able to assess some of the tradeoffs they made. For example, 3
some readers tended to favor the information provided by the burst location over that
of the formant transitions. Other readers varied their strategy depending upon which 3
information they felt was more robust in the given case. Each error was discussed with
the reader who made it in order to elucidate the reader's reasoning. Implementing the

system led to changes and refinements in the rules, particularly in the rule ordering.

Rule development is an iterative, interactive process. Typically, a few examples were run

through the system and, as a result, rules and rule interactions were modified.

5.3 Representation

i
This section describes the representation that has been developed for use in phonetic
decoding. The representation combines knowledge from the acoustic theory of speech 3
production (cf. Fant, 1960; Flanagan, 1972) and distinctive feature theory (Jacobson,
Fant, and Halle, 1952; Chomsky and Halle, 1968).

5.3.1 Static knowledge base 3
Conceptually there are four levels of representation; phonemes (P), phonetic features (F),
qualitative acoustic attributes (QAA) and acoustic measures (M). A block diagram of the I
representation is given in Figure 5.1. Moving from left-to-right in the figure provides a

top-down description of the knowledge. Phonemes are defined in terms of their phonetic
features. Internally, phonemes are also grouped into classes reflecting their manner of
articulation, such as stops, vowels and fricatives. Grouping phonemes into classes allows

some of the rules of the system to be expressed more succinctly. For example, the features

i
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I
feature-of qualitative-attribute-of measure-of

SPhonemes Phone IIQualitative Measureents
eFeaturesttributes

5 has-features has-qualitative-attributes has-measures

3 Figure 5.1: Knowledge representation.

5 [+ obstruent, - continuant] are associated with the class of stops, and inherited by each

member of that class. The phonetic features are related to a set of acoustic attributes,3 each of which takes on a qualitative value. The qualitative attributes describe acoustic

events in the speech signal and the canonical temporal and spectral characteristics of

the features. Many of the qualitative attributes are based on our knowledge of the

Uarticulation of speech. These are either events seen in a spectrogram or derived from

a quantitative acoustic measurement made in the speech signal. The links between the3 boxes mnemonically reflect their relationships.

U has-features has-qualitative-attributes has-measures

d I - prevoiced wiggs
I labial diffuse F2-ocationI lelr opc burst frequency

velarlocation

Figure 5.2: Subset of the knowledge used to represent stops. Some illustrative connections
* are indicated.

I Figure 5.2 shows a subset of the knowledge used to represent the class of stop consonants.

A stop is one of / b,d,9,p,t,k/. The stops are represented by their place of articulation and

9
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their voicing characteristic.' The voicing characteristic of a stop is determined primarily

by the acoustic attributes of voice-onset-time (VOT), prevoicing, and aspiration. The

place of articulation decision is based on acoustic attributes describing the frequency and

time distribution of the burst, the aspiration (if the stop is aspirated) and the formant

transitions into the surrounding vowels. The acoustic attributes take on qualitative

values, each of which is associated with an acoustic measure. For example, the VOT is

the time measured from the release of the stop to the onset of voicing in the vowel. A

VOT of 25 ms would be mapped into VOT-short. Similarly, the distribution of energy

across frequency at the stop release may be characterized as compact, diffuse, even, or

bimodal. An energy distribution that is compact has the energy of the release primarily

located in a frequency range of 1-2 kHz.

Vowels are also represented in the structure. The place of articulation of the vowel 3
is determined by the tongue height and tongue position, and the position of the lips.

The qualitative acoustic attributes associated with vowels describe the locations and

movements of the formants. Acoustically, vowels are also described in terms of duration,

which may be related to the tense/lax feature. The acoustic measures are the formant

frequencies and the duration. For example, a back vowel has a high F1 location and a

low F2 location, and an F1 of 800 Hz is mapped to a high F1 . Semivowels, nasals and

fricatives are represented analogously. Some of the place of articulation attributes for

the fricatives and nasals are shared with the stops. I
5.3.2 Dynamic knowledge base

In the preceding section the relationships between objects in the knowledge base were

outlined. The knowledge is static in that it defines prototypes that do not change as 3
a function of the rules. The representation of each stop can be thought of as a frame

(Minsky, 1975), where the knowledge in the static database defines prototypes and the

default values for each slot. A dynamic database of facts is created for each token as

it is identified. The token exhibits specific acoustic characteristics which are converted

to qualitative acoustic attributes. In turn, these qualitative acoustic attributes are used

in phonetic decoding. The acoustic measures and qualitative acoustic attributes are

IThe phonetic features used to describe the stops may be mapped into the distinctive features of I
-Jacobson et al. (1952).
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obtained from the utterance or by querying the "user." The responses satisfy the pre-
conditions of rules enabling them to fire, resulting in deductions and further queries

for additional information. The framework allows the queries to be replaced with func-

tion calls to measure parameters directly or with database requests to retrieve prestored

measures and/or attributes.

3

dBl 

I - s

j, H etvwl front, high
duration not-long, not-short
IF2 falling, amount large

I F3 falling

$=oo. closure not-prevoiced
ik.z 4release VOT not-short, not-long

aspirated
aspiration falling into release
burst-location broad
energy-distribution even
strength weak

Right vowel: front, high
duration not-short, not-long
F1 not-failing
F2 not-falling, not-rising
F3 not-rising, maybe-faling (during aspiration)

I L3
Figure 5.3: Facts in the dynamic database for the token /Ipi/I

Figure 5.3 shows a spectrogram of / ipi/ and the acoustic attributes associated with the

token. The acoustic attributes were determined by querying the user or from the phonetic

transcription. Rules scan the database of facts to determine the stop's identity.U
5.3.3 Probing the knowledge base

Some facilities have been developed for probing both the static and dynamic knowledge

bases. A what-is or what-has question returns a table look-up or definitional answer. A
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Table 5.2: Examples of the types of queries recognized by the system.

Question Object Answer
what-is phoneme feature bundle

feature set of acoustic attributes
acoustic attribute description (value in context)

what-has feature(s) phonemes having feature(s)
acoustic attribute features having QAA

why phoneme associated deduced features
feature associated QAA's

why-not phoneme missing features
feature missing or contradictory QAA

why or why-not question is generally used to justify in a specific example. Some examples

of the types of queries and the forms of responses are given in Table 5.2.

The system response to the query "what-is a /p/ " is that a /p/ is a voiceless, labial

stop. The response to "what-is voiced?" is a list of all the QAA's that specify voiced:

short-VOT, prevoiced, and not-aspirated. The answer to the query "what-has the feature

voiced?" is the set of stops /b,d,g/. The why-not query is used to ask the system why a

deduction was not made. The system responds with a list of missing and/or contradictory

information.

5.4 Qualitative acoustic attributes

The qualitative acoustic attributes (QAA's) describe the acoustic events visible in the

spectrogram. Each segment is represented by a set of QAA's specific for the type of

segment. Table 5.3 lists some examples of qualitative acoustic attributes used to describe

the stop consonants. Each QAA is used to determine the place or the voicing of the stop.

A complete listing of the qualitative attributes used in the implementation, along with

an example of each, is given in Appendix C. The stop in Figure 5.3 by1 the qualitative 5
acoustic attributes listed in the figure.

QAA's are obtained by querying the user or by mapping acoustic measures. Certain 3
combinations of qualitative acoustic attributes cannot co-occur. For example, it would

I
102 I



Chapter 5. Knowledge-based Implementation

Table 5.3: Examples of qualitative acoustic attributes of stops.

dimension region attribute
voicing release VOT-short

VOT-long
aspirated

closure prevoiced
place release burst-location-HF

burst-location-MF
burst-location-LF
burst-location-bimodal
energy-distribution-diffuse
energy-distribution-compactI energy-distribution-even
energy-distribution-bimodal
strength-strong

_ strength-weak

I
be meaningless to have a burst-strength that was both weak and strong. To prevent such

a situation, the rules that query the user for information take account of the facts already

known. For example, if the user responds that burst-strength is strong, then the system

will not query to determine if the burst-strength is weak, but instead automatically

asserts that the burst-strength is not-weak.

l 5.5 Rules and strategy

Plausible strategies for some of the cognitive aspects of spectrogram reading are simulated

through the rules. While I am unable to verify that spectrogram readers use these or

similar strategies, the strategies "feel right" to the expert. Much of the reasoning is data-

driven-the reader sees acoustic events in the spectrogram and makes deductions based on

them. The reader is able to combine multiple cues in forming a judgement and to consider

multiple hypotheses at once. The reader may use goal-directed reasoning to confirm or

rule out hypotheses. Readers are also able to deal with uncertainty in the acoustic

evidence and, to some degree, with acoustic information that may be contradictory. In

l order to rank competing hypotheses, readers somehow weigh the evidence and form a
decision.

1
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An attempt has been made to capture most of the above cognitive aspects in the imple-

mentation. The implementation integrates data-driven and goal-directed reasoning. The

data-driven rules make deductions based on the qualitative acoustic attributes. Goal-

directed reasoning is used to query the user (or database) for new information and to

confirm or rule out hypotheses. The system models the human capability to simultane-

ously consider multiple hypotheses by maintaining a ranking of all candidates at all times.

The rules may be one-to-one, as linking phonetic features and phonemes, or one-to-many

and many-to-one, as in deducing phonetic features from qualitative acoustic attributes.

Thus, the rules pro ide the capability to handle the problems of multiple cues and mul-

tiple causes. How readers actually combine information from multiple sources and deal

with uncertain evidence has not been determined; however, what the reader appears (or

claims) to be doing is modeled. Several strategies for combining evidence have been

investigated and are discussed in section 5.6. Uncertainty in the acoustic evidence is

modeled by allowing users to specify that an acoustic attribute is present, absent, or

maybe present. Constraining the system to use uncertain acoustic attributes only after

using definitive ones provides a mechanism for relaxing constraints under uncertainty.

Uncertainty in the deductions is handled by associating a strength with each deduction.

5.5.1 Rules

In this section the different types of rules used in the system are described, and examples

are provided. Appendix D contains a listing of the rules. As mentioned in section 5.3,

different rule sets cover the relations between the levels in the representation. Rules map

phonetic features to phonemes, relate qualitative acoustic attributes to phonetic features,
and map acoustic measurements to qualitative acoustic attributes.

Table 5.4: Phonetic features of stops.

I d lIg lIp lt Ik l

voiced + + + - - -
labial -1+ - - - - -

alveolar - + - - + -

velar . . + . . +
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Definitional rules: A set of "definitional rules" map the phonemes to their phonetic
features. The representation of stops according to their place of articulation and their

voicing characteristic is shown in Table 5.4. The rules encode the information in the

table explicitly. An example of a definitional rule is:

If the voicing of the stop is voiced,
and the place of articulation of the stop is alveolar,
then the identity of the stop is Id/.

I While conceptually there are different definitional rules for each stop, they are all actually

implemented with one rule. The rule also combines the beliefs associated with each3 feature and provides a belief in the identity of the stop. The use of beliefs is discussed

further in section 5.6. The following rule explicitly captures the knowledge that a stop3 can be described in terms of its voicing characteristic and its place of articulation.

If the voicing of the unknown-stop is voicing-value with voicing-belief
and the place of articulation of the unknown-stop is place-value with place-belief
and there exists a prototype stop with identity identity

and with voicing voicing-value
and with place of articulation place-value

then the identity of the unknown-stop is identity with belief(voicing-beliefplace-belie]).

I Rules relating qualitative acoustic attributes to features: The relationships

between the qualitative acoustic attributes and the phonetic features are complicated.

The majority of the rules in the implementation deal with these relationships. The rules

are a,11 of the form:

* If precondition(s)
then conclusion(s) with strength(s)

3 The preconditions are generally facts that exist in the database. However, the absence

of a fact may also be used as a precondition: whenever the fact exists, it serves to inhibit3 the rule from firing. In order for a rule to "fire," all of its preconditions must be met. A

rule is said to have "fired" when all of its actions have been taken. The actions typically

* modify the dynamic database.

A given phonetic feature may be signalled by several qualitative acoustic attributes,3 resulting in multiple rules to deduce the phonetic feature. For example, both a long-

VOT and the presence of aspiration in the stop release are cues for the feature voiceless.

3 The corresponding two rules are:
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If the VOT is long,
then there is strong evidence that voicing characteristic is voiceless

If the release is aspirated,
then there is strong evidence that voicing characteristic is voiceless I

If, as in the example of Figure 5.4(c), the preconditions of both of the rules are satisfied.

then the belief that the voicing of the stop is voiceless will be quite strong. (The way I
in which the evidences are combined is discussed in section 5.6.) Not all the qualitative

acoustic attributes for a phonetic feature are always present. For any particular acoustic 3
segment, some or all of the rules may have their preconditions satisfied and those rules

will fire. 3
A given qualitative acoustic attribute may be indicative of different phonetic events.

resulting in rules that have multiple deductions with respect to the context. For example,I

in the absence of contextual information, a burst spectrum that has energy predominantly
at high frequencies is likely to indicate an alveolar place of articulation. However, if the
stop is iia a syllable with a front vowel, the stop is also likely to be velar and may be
labial. The contextual influences are directly incorporated into the rules as follows:

If the burst-location is high-frequency,
then there is strong evidence that the place of articulation is alveolar. 3
If the burst-location is high-frequency,
and the vowel is front
then there is strong evidence that the place of aticulation is velarIand there is weak evidence that the place of articulation is labial.

I
Figure 5.4 illustrates an example requiring the use of such contextual information. The
spectral characteristics of the stop release in the left and middle spectrograms are quite

similar: they both have a predominance of high frequency energy. In this example, it
would not be easy to determine the identity of either stop only by visual inspection of

the release. The spectral characteristics of the release are consistent with both a /t/ and
a front-/k/. However, knowledge that the following vowel in the left spectrogram is an

/u/ indicates that the stop is a /t/. The spectral characteristics of a back, rounded /k/ 1
in the syllable /ku/ are quite different, as can be seen in the right spectrogram in Figure

5.4. 3
The presence or absence of acoustic evidence may be important. For example, if a stop
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(a) /tup/ (b) /kip/ (c) /kup/
Figure 5.4: Spectrograms illustrating contextual variation.I

is syllable-initial and has a VOT value that is medium (maybe-short and maybe-long),3 then the presence of aspiration indicates that it is voiceless, and the absence of aspiration

is indicative of voiced. Two rules that use aspiration to deduce the voicing characteristic3 are:

If the stop is syllable-initial

and the VOT is maybe-long and maybe-short,
and the release is aspirated,
then there is strong evidence that voicing characteristic is voiceless.

If the stop is syllable-initial
and the VOT is maybe-long and maybe-short,
and the release is not-aspirated,
then there is medium evidence that voicing characteristic is voiced.

Note that the presence of aspiration is a stronger indicator of voiceless than the lack of

aspiration is of voiced. In other cases, the presence of an acoustic attribute may indicate

a feature, but the absence of the acoustic attribute does not provide negative evidence3 for that feature. One such acoustic attribute is a double burst (see Figure 1.2). When a

double burst is observed it is a strong indicator of a velar place of articulation. However,

1
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since a double burst is not that common, the system must have some evidence that the

place of articulation is velar before attempting to find a double burst. The double-burst

rule is:

If the place of articulation is velar with belief I
and the release has a double burst
then there is strong evidence that place of articulation is velar. 3

The value of the voicing characteristic and of the place of articulation are deduced in-

dependently. While it is possible to write rules to deduce phonemes directly instead of

features, I have chosen not to do so. Deducing phonetic features rather than phonemes

adds another level of representation and generalization. This allows commonality in the

rules for place or voicing to extend to different manner classes. For example, vowels

and nasals are both shorter preceding voiceless consonants than voiced consonants in the

same syllable (House and Fairbanks, 1953; Peterson and Lehiste, 1960; Raphael et al.,

1975; Klatt, 1976; Hogan and Rozsypzl, 1980; Glass, 1983; Zue and Sia, 1984). This

phonological effect can be captured in one rule, instead of individually for each phoneme. 3
The formant motion between a vowel and a consonant depends primarily on the place of

articulation of the consonant, and not on its identity. Thus, for example, the qualitative 3
acoustic attribute of falling formants can be associated with the feature labial, covering

multiple phonemes.

Phonotactic constraints are implemented in rules which account for the phonetic context.

For example, if the stop is preceded by a fricative, the system will attempt to determine

whether the fricative is an /s/or a /z/. If the fricative is a /z/, the system asserts that

the stop is syllable-initial. If the fricative is an /s/, the system must determine whether 3
of not the /s/ and the stop form a cluster. If the stop is in a cluster with the /s/, then

the stop is voiceless. If the stop is not in a cluster with the /s/, then there is a syllable

boundary between the fricative and the stop, and the syllable-initial rules to determine
the voicing of the stop may be applied.

The context is specified in the preconditions of the rules to ensure that they fire only under

the appropriate conditions. When the stop is preceded by a fricative, the formant motion

in the vowel to the left of the fricative is not used, since the formant transitions should

always indicate the alveolar place of articulation of the fricative. This is implemented by

preconditions in the vowel formant rules which specify that the right context cannot be U
a fricative. For a stop preceded by a homorganic nasal, the formant motion in the vowel
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preceding the nasal is used to infer the place of articulation of the nasal, which is the
same as that of the stop.

U
maybe-short

short Imaybe-long long

a b

Figure 5.5: Example of mapping ranges for numerical quantities.

Mapping rules: The mapping rules convert acoustic measurements into qualitative
attributes. The mapping rules are all implemented as backward-chaining rules, and

therefore do not fire unless they are called upon to produce a result needed by another
rule. The mappings are schematically illustrated in Figure 5.5. The rules which map

from numerical quantities into qualitative acoustic attributes are of the form:

If the measured-value is < a
then the attribute has the qualitative-value short
else if the measured-value is > b

then the attribute has the qualitative-value long
otherwise the attribute has the qualitative-values maybe-short and maybe-long

The mapping rules typically divide the range into disjoint regions, where measures falling

between regions are associated with both labels. The mapping ranges were hand-selected
by looking at histograms of the measure on a set of training samples. However, these
could be statistically trained if enough data were analyzed.

I 5.5.2 Control strategy

I Spectrogram readers appear to extract acoustic attributes in the spectrogram and to
propose a set of features consistent with the attributes. The candidate set is refined by

* looking for additional acoustic evidence to confirm or rule out some of the possibilities.
The control strategy attempts to model the behavior of spectrogram readers. The order
in which the rules fire can be controlled by priorities associated with the rules and by

the use of preconditions. Both of these methods are used to affect the behavior of the
system so as to have it appear more "intelligent."
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The system uses general information before using more specific information. This is
implemented by associating higher priorities with the more general rules. Preconditions
are also used to prevent the system from asking for detailed information too early. An
example was shown in the double-burst rule, where there had to be some belief that the
place of articulation was velar before the rule could be applied.

The system maintains a ranking of all candidates. Each time a new fact is asserted into
the database, the ranking rules reorder the candidates for place and voicing. In this
way, the system simultaneously considers multiple hypotheses at the same time. The

list of ordered candidates enables the system to pursue the most likely candidate first.

The rules are ordered so as to seem logical to the user. For example, if labial is the top
candidate, the system tries to determine if the stop has a weak release, as a weak release
provides confirming evidence for labial. If the top candidate is alveolar, and the second
candidate is labial, the system will attempt to find out if the release is strong, as a strong
release favors alveolar over labial. However, if the top two candidates are alveolar and

velar, rules using the strength of the release are postponed, since the release strength is
not a good attribute to distinguish between them.

Without specific "termination" rules, the system exhaustively fires all rules until there
are no more left. However, the system may be run in a mode where, when it has enough

evidence for a feature, it does not exhaustively pursue all the alternatives. This behavior
is implemented by rules which attempt to confirm the top candidate and to rule out the

closest competitor when the belief in the top candidate is large enough. If the belief in
the top candidate (and the distance between the top two candidates) increases, then the
system confirms the top candidate and no longer attempts to determine the value of the

feature.

The behavior of the system is apparent to the user primarily through the rules which
query the user.2 All of the queries are the result of backward chaining and are imple-
mented in ART using "goals." In this way, the system does not ask for information that
it does not need. When a rule needs some information in order to fire, and there exists a

backward chaining rule that can supply the information, a "request" is made. The rule
with the highest priority that can supply the requested information will be fired, resulting

in a query to the user. The order in which the system queries the user for information
2The term "user" refers to all queries. In reality, the query might be made to a database of facts or

to make measures in the acoustic signal directly.
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depends on what facts are in the database. Using preconditions and priorities to affect
the control, the system can ask questions that pursue the best candidate.

The queries made of the user fall into three categories: numbers corresponding to an

acoustic measurement such as a duration or formant frequency; classifications such as the

segment's identity, manner class or syllable-position; and qualitative acoustic attributes.

The QAA's are categorical: the user is queried as to the presence of the QAA, and may

respond with yes, no, maybe, or can't-tell. The response of maybe handles (to a limited

degree) uncertainty in the acoustic evidence. Can't-tell is only used when the acoustic

evidence needed to answer the query is not visible in the spectrogram. For example, if

the system is asking whether F3 is falling, but F3 is not visible in the spectrogram, then

that information can not be supplied.I
5.5.3 An example of identifying a stop

In this section, the stop in Figure 5.3 is identified by the rule-based system.

U ; Each rule firing is preceded by FIRE n, where n is the nth rule to fire
; fact numbers (f-) and goal numbers (g-) used to trigger rule are shown in parentheses
; Query rules provide the questions asked of the user with allowable responses:

(yes maybe no cant-tell)
;--> are asserted facts

; <== are retracted facts

set up token to be identified, it is a both a token and a stop
FIRE I TOKEN-TO-BE-IDENTIFIED ()
==> f-1 [INSTANCE-OF T1 TOKEN]
==> f-2 [INSTANCE-OF T1 STOP]

; a stop has intervals for the closure, release and aspiration
FIRE 2 CREATE-INTERVALS-FOR-STOP (f-2)
==> f-3 [INSTANCE-OF CLO1 CLOSURE]

-> -4 [INTERVAL-OF CLO1 T1]

==> f-5 [INSTANCE-OF RELI RELEASE]
==> f-6 [INTERVAL-OF RELi Ti]
==> f-7 [INSTANCE-OF ASP1 ASPIRATION]
==> f-8 [INTERVAL-OF ASPi Ti]

R1 is to the right of TI.

-- f "-9 [INSTANCE-OF Ri TOKEN]

f-10 [RIGHT-OF R1 Ti]
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=-> f-l1 [CLASS RI VOWEL)
==> f-12 [VOICING-CHARACTERISTIC R1 F-VOICED)

Li is to the left of T1
FIRE 4 SETUP-LEFT-CONTEXT (f-i)

--=> f-13 [INSTANCE-OF Li TOKEN]
=--> f-14 [LEFT-OF Li Ti]

==> f-15 [CLASS LI VOWEL]
==> f-16 [VOICING-CHARACTERISTIC Li F-VOICED]

look up the syllable position of the stop
FIRE 5 DETERMINE-SYLLABLE-POSITION-VOWEL (f-2 f-9 f-10 f-li f-13 f-14 f-15)
==> f-17 [PROPERTY-OF SYLLABLE-INITIAL Ti]

FIRE 6 QUERY-BURST-VISIBLE (f-2 f-5 f-6 g-l)
Can you see a stop release in the spectrogram?

==> f-18 [QUALITATIVE-ATTRIBUTE-OF Q-BURST-VISIBLE-YES REL1]

FIRE 7 QUERY-MVT-INITIAL (f-2 f-5 f-6 f-17 g-2)
What is the VOT value [in ms]?

==> f-19 [M-VOT RELI 30.6]

; the VOT of 30.6 ms value is neither short nor long
FIRE 8 MAP-VOT-disjunct-3 (f-2 f-5 f-6 f-17 f-18 f-19 g-3)
==> f-20 [QUALITATIVE-ATTRIBUTE-OF Q-VOT-SHORT-NO REL1]
---> f-21 [QUALITATIVE-ATTRIBUTE-OF Q-VOT-LONG-NO REL1]

FIRE 9 QUERY-PREVOICING ( f-2 f-3 f-4 f-13 f-14 f-15 g-4)
Is there prevoicing during the closure interval?

==> f-22 [QUALITATIVE-ATTRIBUTE-OF Q-PREVOICED-NO CLO1]

; VOT short-no, long-no and prevoiced-no -+ voiceless
FIRE 10 VOICING-PREVOICING-VOICELESS-MEDIUM (f-2 f-3 f-4 f-5 f-6 f-15 f-16 f-20 f-21 f-22)
==> f-23 [ADD-TO-SCORE I T1 VOICING-CHARACTERISTIC F-VOICELESS MEDIUM-EVIDENCE]

; the next three rules update the scores to maintain a ranking of all candidates,
; later updates are skipped
FIRE 11 COPY-FACT (f-23)
==> f-24 [COPY-ADD-TO-SCORE Ti VOICING-CHARACTERISTIC F-VOICELESS MEDIUM-EVIDENCE] Im
FIRE 12 ADD-TO-SCORE (f-24)
<==f-24 [COPY-ADD-TO-SCORE T1 VOICING-CHARACTERISTIC F-VOICELESS MEDIUM-EVIDENCE]

---> f-25 [SCORE VOICING-CHARACTERISTIC T1 F-VOICELESSS 0.5]

==> f-26 [ADDED-TO-SCORE Ti VOICING-CHARACTERISTIC F-VOICELESS MEDIUM-EVIDENCE3

FIRE 13 RANK-VOICING (f-2 f-25)

voicing order for TI: f-voiceless 0.5
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f-voiced 0I==> f-27 [TOP-CANDIDATE VOICING-CHARACTERISTIC Ti F-VOICELESS 0.5]

FIRE 14 QUERY-ASPIRATION-VOICELESS (f-2 f-5 f-6 f-7 f-8 g-5)
Is the release aspirated?

==> f-28 [QUALITATIVE-ATTRIBUTE-OF Q-ASPIRATED-YES ASP1]

; VOT short-no, long-no and aspirated-yes -+ voiceless
FIRE 15 'JICING-ASPIRATION-YES-VOICELESS (f-2 f-5 f-6 f-7 f-8 f-17 f-20 f-21 f-27 f-28)
==> f-29 [ADD-TO-SCORE TI VOICING-CHARACTERISTIC F-VOICELESS STRONG-EVIDENCE]

I FIRE 20 RANK-VOICING-CONFIRM (f-I f-29)
voicing order for TI: f-voiceless 1.3

f-voiced 0
If-30 [CONFIRM VOICING-CHARACTERISTIC TI F-VOICELESS 1.31

FIRE 21 QUERY-BURST-LOCATION-LF (f-2 f-5 f-6 g-6)
Is the burst (including frication noise) primarily at low frequency (roughly below 2 kHz]?

==> f-31 [QUALITATIVE-ATTRIBUTE-OF Q-BURST-LOCATION-LF-NO RELi]

FIRE 22 QUERY-BURST-LOCATION-HF (f-2 f-5 f-6 g-7)
Is the burst (including frication noise) primarily at mid frequency (roughly 2-4 kHz]?

==> f-32 [QUALITATIVE-ATTRIBUTE-OF Q-BURST-LOCATION-MF-NO REL1]

FIRE 23 QUERY-BURST-LOCATION-HF (f-2 f-5 f-6 g-8)
Is the burst (including frication noise) primarily at high frequency [mainly above 4 kHz]?

==> f-33 [QUALITATIVE-ATTRIBUTE-OF Q-BURST-LOCATION-HF-NO RELI]

FIRE 24 QUERY-BURST-LOCATION-BROAD (f-2 f-5 f-6 g-9)
Is the burst (including frication noise) evenly distributed across all frequencies [0-8kHz]?

==> f-34 [QUALITATIVE-ATTRIBUTE-OF Q-BURST-LOCATION-BROAD-YES RELI]

; broad burst location - labial

FIRE 25 PLACE-BURST-BROAD-INITIAL (f-2 f-5 f-6 f-17 f-34)
==> f-35 [ADD-TO-SCORE Ti PLACE-OF-ARTICULATION F-LABIAL STRONG-EVIDENCE]

FIRE 30 RANK-PLACE (f-2 f-35)
place order for Ti: F-LABIAL 0.8

f-alveolar 0
f-velar 0

==> f-36 [TOP-CANDIDATE PLACE-OF-ARTICULATION T1 F-LABIAL 0.8]
---> f-37 [2ND-CANDIDATE PLACE-OF-ARTICULATION TI F-ALVEOLAR 0]

FIRE 31 QUERY-TOP-BURST-STRENGTH-WEAK (f-2 f-5 f-6 f-18 f-36 g-10)
Is the burst weak relative to the vowel?

==> f-38 [QUALITATIVE-ATTRIBUTE-OF Q-STRENGTH-WEAK-YES RELi

I ; release weak -- labial
FIRE 32 PLACE-STRENGTH-WEAK-INITIAL (f-2 f-5 f-6 f-17 f-38)

I" ==> f-39 [ADD-TO-SCORE TI PLACE-OF-ARTICULATION F-LABIAL MEDIUM-EVIDENCE]
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FIRE 37 RANK-PLACE (f-2 f-36 f-37)
place order for Ti: f-labial 1.3

f-alveolar 0
f-velar 0

==> f-40 [TOP-CANDIDATE PLACE-OF-ARTICULATION T1 F-LABIAL 1.31

==> f-41 [2ND-CANDIDATE PLACE-OF-ARTICULATION T1 F-ALVEOLAR 01

FIRE 38 QUERY-F2-FALLING (f-2 f-9 f-1O f-li f-40 g-11)
Is F2 falling into the stop? [Pay attention to the 30-40 ms near the stop]

==> f-42 [QUALITATIVE-ATTRIBUTE-OF Q-F2-FALLING-NO R1]

FIRE 39 QUERY-F2-FALLING (f-2 f-13 f-14 f-15 f-40 g-12)
Is F2 falling *rto the stop? [Pay attention to the 30-40 ms near the stop]

-> f-43 [QUALITATIVE-ATTRIBUTE-OF Q-F2-FALLING-YES Li]

FIRE 40 QUERY-F2-MOTION-AMT-LARGE (f-13 f-14 f-15 f-43 g-13)
Does F2 move a large amount (> 200 Hz) from the stop to the vowel?

==> f-44 (QUALITATIVE-ATTRIBUTE-OF Q-F2-AMT-LARGE-YES Li]

; look up vowel identity
FIRE 41 QUERY-IDENTITY (f-13 f-14 f-15 g-14)
==> f-45 [ASKED-IDENTITY Li /i/1

; map from vowel identity to features
FIRE 42 VOWEL-FEATURES (f-45)
==> f-46 [HAS-FEATURES Li F-HIGH)
-=> f-47 [HAS-FEATURES Li F-FRONT]
--- > f-48 [HAS-FEATURES Li F-TENSE]
-=> f-49 [HAS-FEATURES Li F-LONG]

; left F2 falling a large amount into stop, front vowel -- labial, alveolar, not velar
FIRE 43 FORMANTS-LF2-FALLING-LARGE-dijunct-i (f-2 f-13 f-14 f-15 f-43 f-44 f-.47)
==> f-50 [ADD-TO-SCORE T1 PLACE-OF-ARTICULATION F-LABIAL STRONG-EVIDENCE]
-=> f-51 [ADD-TO-SCORE T1 PLACE-OF-ARTICULATION F-ALVEOLAR WEAK-EVIDENCE]
==> f-52 [ADD-TO-SCORE T1 PLACE-OF-ARTICULATION F-VELAR MEDIUM-NEGATIVE-EVIDENCE]

FIRE 48 RANK-PLACE-CONFIRM (f-2 f-40 f-41 f-50 f-51 f-52)
place order for Ti: f-labial 2.1

f-alveolar 0.2
f-velar -0.5

==> f-53 [CONFIRM PLACE-OF-ARTICULATION T1 F-LABIAL 2.1]

==> f-54 [RULEOUT PLACE-OF-ARTICULATION T1 F-ALVEOLAR 0.2]

FIRE 49 QUERY-F2-RISING (f-9 f-10 f-li f-54 g-15)
Is F2 rising into the stop? [Pay attention to the 30-17 ms near the stop]

==> f-55 [QUALITATIVE-ATTRIBUTE-OF Q-F2-RISINO-NO Ri]
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; look up vowel identity
5FIRE 0 QUERY-IDENTITY (f-9 f-10 f-li g-15)

==> f-56 [ASKED-IDENTITY RI /I/]

; map from vowel identity to features
FIRE 51 VOWEL-FEATURES (f-56)
i=> f-57 [HAS-FEATURES R1 F-HIGH]

= f-58 [HAS-FEATURES Ri F-FRONT]
==> f-59 [HAS-FEATURES R1 F-TENSE]
I==> f-60 [HAS-FEATURES RI F-LONG]

; lack of formant motion -- not labial
FIRE 52 FOMANTS-RF2-FLAT-disjunt-i (f-2 f-9 f-10 f-l1 f-54 f-55 f-58)
==> f-61 [ADD-TO-SCORE T1 PLACE-OF-ARTICULATION F-LABIAL MEDIUM-NEGATIVE-EVIDENCE]

FIRE 57 RANK-PLACE (f-2 f-53 f-54 f-61)
place order for Ti: f-labial 1.6

f-alveolar 0.2
f-velar -0.5

==> f-62 [TOP-CANDIDATE PLACE-OF-ARTICULATION T1 F-LABIAL 1.6]
==> f-63 [2ND-CANDIDATE PLACE-OF-ARTICULATION Ti F-ALVEOLAR 0.2]

FIRE 58 QUERY-CONFIRM-F3-FALLING (f-2 f-13 f-14 f-15 f-62 g-16)
Is F3 falling into the stop? [Pay attention to the 30-17 ms near the stop]

==> f-64 [QUALITATIVE-ATTRIBUTE-OF Q-F3-FALLING-YES Li]

; left F3 falling into stop, front vowel -+ labial
FIRE 59 FORMANTS-LF3-FALLING-disjunct-I (f-2 f-13 f-14 f-15 f-47 f-64)
==> f-65 [ADD-TO-SCORE TI PLACE-OF-ARTICULATION F-LABIAL MEDIUM-EVIDENCE]

FIRE 64 RANK-PLACE-CONFIRM (f-2 f-62 f-63 f-65)
place order for Ti: f-labial 2.1

f-alveolar 0.2
f-velar -0.5

=> f-66 [CONFIRM PLACE-OF-ARTICULATION TI F-LABIAL 2.1]
f-67 [RULE-OUT PLACE-OF-ARTICULATION TI F-ALVEOLAR 0.2)

FIRE 65 QUERY-CONFIRM-ASPIRATION-TAIL (f-2 f-7 f-8 f-28 f-66 g-l8)
Does the low frequency edge of the aspiration lower in frequency into the stop?

==> f-68 [QUALITATIVE-ATTRIBUTE-OF Q-TAIL-YES ASP1]

; rising location of aspiration --- labial
FIRE 66 ASPIRATION-LABIAL-TAIL (f-2 f-7 f-8 f-9 f-10 f-l1 f-28 f-57 f-68)
==> f-69 [ADD-TO-SCORE Ti PLACE-OF-ARTICULATION F-LABIAL MEDIUM-EVIDENCE]

; confirmed place as labial
FIRE 71 RANK-PLACE-CONFIRM (f-2 f-66 f-67 f-69)

place order for TI: f-labial 2.6
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f-alveolar 0.2
f-velar -0.5

==> f-70 [CONFIRMED PLACE-OF-ARTICULATION TI F-LABIAL 2.6)

FIRE 72 IDENTIFY-STOP (f-i f-2 f-30 f-70)
token: Ti stop: p voicing: f-voiceless 1.3 place: f-labial 2.6

stop: t voicing: f-voiceless 1.3 place: f-alveolar 0.2

5.6 Scoring

The rules provide evidence that a given feature has a particular value. Since there are

multiple rules which deduce the same feature, some way is needed to combine the ev-

idence from the different rules. Combining evidence is an unsolved problem in expert

systems research. There have been different approaches to the problem, including prob-

abilistic, such as Bayesian (Duda et al., 1976), fuzzy logic (Zadeh, 1975), and more ad

hoc formulations such as counting (Keeney and Raiffa, 1976) and the MYCIN-combine

function (Shortliffe, 1975).

It is beyond the scope of this thesis to try to determine an optimum scoring strategy.

However, there are some properties that a reasonable scoring scheme for this application

should have:

" The scoring must be able to handle both positive and negative evidence. I
" The combining of evidence should be order independent.

* The combining of evidence should be monotonic. Positive evidence can never de-

crease the belief in something and negative evidence can never increase it.

" Since the rules assert conclusions with strengths, the combining should also preserve

the relative strengths of the conclusions. A weak conclusion cannot increase the

belief more than a strong one can. The converse is also true. In addition, a strong

positive conclusion and a weak negative conclusion cannot combine to reduce the

belief in something.

The goal in building a knowledge-based system is to use domain knowledge to solve the I
problem. By using rules that are based on our knowledge about the articulation of speech
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and our experience in spectrogram reading, the hope is that reasonable performance can
be obtained with a small amount of training data. Much more training data would be

required to train a statistical classifier on the qualitative acoustic attributes. A proba-

bilistic scoring strategy (Duda et al., 1976; Duda et al., 1981) could also be used to model

the correlations between the qualitative acoustic attributes and the phonetic features, if

there was enough training data.

* Two simple scoring schemes satisfying the above properties have been investigated.

The first assigned numerical values to weak, medium, strong and certain evidence, and

summed the evidence. Positive evidence was added, and negative evidence subtracted.

I The numbers used were:

with-certainty = 1.0
strong-evidence = 0.8
medium-evidence = 0.5
weak-evidence = 0.2

The second scheme counted the number of reasons of each strength. The candidates were

ranked according to lexicographic ordering (Keeney and Raiffa, 1976). In lexicographic

ordering the candidate with the largest number of strong reasons is the best. If two

candidates have an equal number of strong reasons, they are ranked by the number of

medium reasons, etc. In addition, no number of strong evidences can combine to be

certain, no number of medium evidences can equal a strong, and no number of weak

evidences can equal a medium.

I 5.7 Evaluation

I The rule-based implementation has been evaluated in several ways. First, system per-

formance on a subset of the data from each of the five tasks described in Chapter 2 (p.

20) is presented. Second, the rules used in the SS-1 system (Zue and Lamel, 1986) were

reimplemented in ART for comparison, and the tokens in set 1 (Table 5.1) were used to

assess the sensitivity of the system to the scoring method.

3 Evaluation on the five tasks: The system was tested on a subset of the tokens

used to evaluate the spectrogram readers. The tokens for each task were divided into

two sets. The first set contained tokens that were heard correctly by all listeners and were
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read correctly by all readers (AC). The second set contained tokens that were misheard or

misread by at least one subject (SE). The tokens were selected so as to include roughly I
equal numbers of each stop in a variety of vowel contexts. System performance for the five

tasks is given in Table 5.5 for the two subsets. Both the top choice3 and top-two choice 3
accuracies are provided. The system performance was about the same for syllable-initial

singleton stops and syllable-initial stops preceded by /s/ or /z/. The system identified 3
singleton stops better when they occurred in syllable-initial position than in non-syllable-

initial position. Performance was better for non-initial stops in nasal clusters than for

singleton non-initial stops (compare tasks 4 and 5). The system failed to propose the

correct candidate in 2% of the AC tokens and 12% of the SE tokens. As expected, the

performance on the AC subset was better than on the tokens that were misidentified by

humans.

For this evaluation, syllable position information was provided to the system. In task 2

the system was also told the identity of the fricative. When the fricative was an /s/,

the system proposed two alternatives- one in which the is/ and stop formed a cluster

and the other in which they did not. If the system identified the stop correctly for the

appropriate condition (cluster or not), the system was credited with identifying the stop

correctly. In tasks 4 and 5, the system was informed that the stops were non-initial and,

in task 5, that the preceding sonorant was a nasal forming a cluster with the stop.

Table 5.5: System evaluation on the five tasks. 3
1  Percent correct: top/top 2

- N  AC INI SE 11
task 1 24 88/96 27 82/93
task 2 26 89/96 11 64/73[
task 3 14 100/100 17 82/94
task 4 18 67/89 19 58/68
task 5 12 100/100 6 83/100 3

I
Analysis of errors on the AC tokens: Even though listeners and spectrogram

readers were able to identify the tokens in the AC subset, the system still made errors

3When there was a tie for the top choice, the system was credited with having identified the stop
correctly. Ties occurred on only 6 of the 174 tokens.
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I Table 5.6: Confusion matrices for system identification of AC and SE tokens.

I AC I number percent Listener's response
ranswerl tokens Icorrect b d I 9- I t I k 1] 6' 1

b 14 93 13 1 1 -

d 13 62 2 8 2 1
9 11 91 1 10
P 16 94 1 15
t 18 100 18
k 18 78 4 14
__ 2 100 21 _ 2 100 2

(a) AC tokens

SE number percent Listener's response
ra-ns-werl of tokens correct b d] 9 p [t k 6'

b 11 91 10 1
d 15 47 3 7 1 4

10 60 1 6 1 2

p 16 75 3 12 1
t 14 93 1 13
k 10 70 1 2 7
]"2 50 1

I 6 2 501 " 1

(b) SE tokens

I
on 12 of the 94 tokens. The second candidate was correct in 9 of the 12 errors. In half of

I the errors, the system's top choice was listed as an alternate candidate by a spectrogram

reader. A confusion matrix for the combined errors for all tasks is shown in Table 5.6.

Averaged across all the tasks, 75% of the errors were in place of articulation and 17%

were in voicing.

I Most of the errors are reasonable, even though there may have been acoustic evidence

for the correct answer. A few examples of tokens on which the system made errors are

* shown in Figure 5.6. The errors made on the two left tokens are more reasonable than the

errors for the two tokens on the right. The leftmost token was called /d/, with /b/ as

a second candidate. The burst release is located primarily at mid frequencies (2-4 kHz),

a lower frequency location than is expected for an alveolar stop between front vowels.

However, the preceding vowel is a fronted-/u/, which would probably not be fronted if
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Tim (ucoms)Tim (scoods) Ti.(o.d) Time (ooods)I

t o. . V 2 a- M3 -

_ IKee Raeonog 
s A4 S2o a 7 HS

0.0 O 0. 3 0.3 0.0 0.1 0.3 0.3 0.0 0.1 0.3 0.3 0.0Q0. 0 .3 0 .4 u

(a) /ud-i/ (b) /Ap---/ (c) / a-ga/ (d) /iz-ke/

Figure 5.6: Examples of system errors on AC tokens. I
the stop was labial. The system is not using the information that the preceding vowel is

fronted. The formant transitions are also slightly better for alveolar than for labial.

The middle two spectrograms both have conflicting evidence between the burst charac-

teristics and the formant transitions. In /Ap-/ the formants are better for labial, but

the high frequency concentration of energy in the release supports alveolar. While the
weak release in /9--ga/ suggests labial, the formant transitions from the stop into the j
/a/ are incompatible with labial. In this case, the system favored labial quite strongly,

even though the spectrogram readers ruled labial out. While the rightmost spectrogram

was called a / t/, /k/ was a close second choice. The distinguishing acoustic cue is subtle,

but there is more energy in the release around 3 kHz than there is at higher frequencies,

Isupporting velar.
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Analysis of errors on the SE tokens: The tokens in the SE subset had an error
by at least one spectrogram reader or one listener. The system made errors on 23 of the

80 tokens. The same error was made by a listener in 14 of these cases. A reader made

I the same error as the system on 11 of the tokens, and supplied the system's top choice
as an alternate candidate for another 5. Only in 2 instances did the system propose an
answer that did not agree with the listeners or the reader.

ISOS TIMin.(sacoud) T1. ods1)

* -.," J

II .

I. 11 It 6L 2 a&

Figur a.7 R atee fsstmerr om "toes

dB -79: - -

I r Ii I I

k kz

I
0 al i

A confusion matrix for the system's identification of the SE tokens is given in Table 5.6.I The system made a higher proportion of voicing errors on the SE tokens than i did on

the AC tokens. This is in agreement with both the listeners and the spectrogram readers
on these tokens. Figure 5.7(a) shows spectrograms of two such errors. For the //on

the left, the stop ha s tem's ieneither short nor long, it is hard to tell if the stop

is aspirated, and there is no prevoicing during the closure. The system made a voicing

I
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error, calling the stop voiceless. The stop was correctly identified by the spectrogram

reader as a /9/, with /k/ a second choice. Only 59% of the listeners correctly identified I
the stop as a /9/; the remainder called it /k/. I

The /p/ in the middle has a short-VOT and no aspiration, and it may have a short

period of prevoicing during closure. The prevoicing caused the system to favor a voiced

stop over a voiceless one. The reader listed /p/ as the top choice and /b/ as an alternate. I
Nineteen of the 20 listeners identified the stop correctly; one listener called the stop / b/.

The spectrogram in (b) is an example of an error in the place of articulation that was

also made by listeners and readers. The top candidate was a /p/, and /k/ was supplied

as a second choice. The spectrogram reader labeled the stop only as /p/ as did 3 of the

20 listeners.

Performance with termination: The system was also evaluated using termination

rules. If there was sufficient evidence for a phonetic feature, the system stopped attempt-

ing to determine that feature. Performance using the termination rules was essentially

unchanged. An additional error occurred on task 1 and one fewer error was made on task

4. The termination rules applied 53% of the time for voicing, 48% of the time for place.

and 27% of the time for both voicing and place. The system terminated early more often

on AC tokens than on SE tokens.

Evaluation using other subjects to supply acoustic descriptions: The system

has been evaluated on 24 tokens from the AC set with data supplied by users unfamiliar

with the system. The system correctly identified 88% of the tokens, and proposed the

correct answer as the second candidate when it made an error.

Evaluation on the SS-1 data: The rules used in the SS-1 system reported in Zue

and Lamel (1986) were reimplemented in ART, with minimal modifications. The control I
structure in ART is primarily forward chaining, while in the MYCIN-based SS-1 system

it was backward chaining. The reimplemented system had a "better feel" to it because of 3
the difference in control strategy. In addition, the MYCIN-combine function was replaced

by simple addition, and the certainties associated with the acoustic attributes in the SS-1

system were not used. Thus, a comparison has been made to determine what effect these

design changes had on the system performance.
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The ART implementation of the SS-1 rules (SS-2) was evaluated on the set 1 tokens used

to evaluate the SS-1 system. The SS-2 system had an an accuracy of 88% for the top
choice and 98% including the top two choices. The performance is comparable to that of

SS-1 (see Table 5.1). This comparison indicates that the certainties associated with the
acoustic attributes in the MYCIN-based system are not necessary. The change in the

scoring strategy also seems to be unimportant.

1 40

2 30

S20I 0

0- 10 S

1 0 .......

add count random a=0.1 a=0.2 a=0.3 a=0.4 mycin qual

I Figure 5.8: Comparison of scoring strategies on SS-1 set 1.

I The same data were also used to assess the importance of the strengths associated with

the rule conclusions. Two experiments were conducted. In the first experiment the

rule strengths were all set to 1.0, eliminating the distinction between weak and strong
evidence. The resulting error rate of 27%, shown as "count" in Figure 5.8, is almost

I double that of the baseline system which has a 15% error rate ("add" in Table 5.8). In a

second experiment, a random number in the range [0, 1.0] for positive evidence and [-1.0.

0] for negative evidence, was generated and summed. This experiment was conducted

10 times. The mean error rate was 30% with a standard deviation of 4%. Both of
these experiments indicate that rule strengths associated with the rule conclusions are

important and that not all the evidence should be treated equally.

I To evaluate the dependency of the performance on the selection of the numerical values,
experiments were conducted in which a random number, in the range [-a,a], was added

to the score at each update. The system was evaluated 10 times on set 1 for a = 0.1, 0.2,

0.3 and 0.4. The results are shown in Figure 5.8. The difference in the mean error rate

from the baseline of 15% is insignificant at the .05 level for all cases. For a = 0.3, 0.4,
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the difference is significant at the .01 level. These experiments indicate that the system

is relatively insensitive to the numerical values assigned to the strengths. I
The remaining two data points in Figure 5.8 show the performance of the system using

two other scoring strategies discussed in section 5.6. The point labeled "mycin" used

the EMYCIN-combine function (Shortliffe, 1976). The point labeled "qual" used the

lexicographic scoring. That the system performance is comparable to the "add" method n
illustrates the robustness of the system to changes in scoring methods.

5.8 Discussion of some implementation issues

The hardest part of the system implementation, and by far the most time-consuming,

was controlling the system to have acceptable behavior. Because of the way backward 3
chaining is integrated in ART, different rules had to be written for almost every query

in the system. Each query rule had a priority to ensure that it fired at the appropriate 3
time.

The rules were structured so that "yes" evidence was used before "maybe" evidence. In

order to simulate the concept "use information that is known to be true, before using

evidence that might be true," the rules had to be duplicated, assigning a lower priority 3
to rules based on uncertain evidence. It would have been better if a "meta-rule" could

have been written that said to use certain evidence before using uncertain evidence. i

Duplicating rules requires extra care when the rules are modified, as the modifications

may have to be made in multiple copies of the rule.

Another problem resulted from augmenting ART to handle confidences. The justification

capabilities provided by ART could not be used. As a result justification rules to use for

debugging and to provide explanations had to be written.

5.9 Summary I

A description of the representation of phonemes and a set of rules relating phonemes to

acoustic attributes has been provided. The reasoning of the system "feels" acceptable

to a spectrogram reader. The performance of the system indicates that knowledge for-
malization has been somewhat successful. However, the ability of human spectrogram
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readers and listeners surpasses that of the knowledge-based system, indicating the need

for additional knowledge.

i e The relationships between phonemes and acoustic attributes have been specified

using a frame-like representation. An intermediate representation in terms of pho-

netic features was used.

* Rules were used to query the "user" for acoustic attributes. Phonetic features were

deduced from qualitative acoustic attributes.

* The system simultaneously considered multiple hypotheses and maintained a rank-

ing of hypotheses for each feature independently.

i The system could be run in a mode where it decided when it had enough evidence to

believe the value of a feature, and stopped pursuing alternatives. The termination3 rules did not reduce the system's accuracy.

o Evaluation on a set of tokens from five tasks indicated that the errors made by

the system were often reasonable and in agreement with spectrogram readers and

i listeners.

* The system was shown to be relatively insensitive to changes in scoring strategies.

The experiments also indicated that the strengths associated with rule deductions

were important.

II
i
I
I
I
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Chapter 6

Concluding Remarks

I
Studying spectrograms of continuous speech provides an opportunity to learn about

the canonical characteristics of speech sounds and coarticulatory effects (Fant, 1962;

Klatt and Stevens, 1973). In order to obtain a better understanding of the spectrogram

reading process, and to assess the abilities of spectrogram readers, spectrogram reading

was formally evaluated. While a variety of spectrogram reading evaluations have been

reported previously, it is difficult to assess and compare the experiments. The conditions

of the experiments were quite varied, and only a few subjects were tested on data from n

a small number of talkers (typically 1-5). In Chapter 4 the results of rigorous testing

of several spectrogram readers were discussed. The performance of five spectrogram 5
readers, assessed on speech from almost 300 talkers, was found to be comparable to

the best accuracies previously reported. The tasks at which the readers were assessed 5
were quite difficult. The test tokens were extracted from continuous speech, spoken by

many talkers, and in a variety of vowel and stress environments. Because the reader was

provided with a spectrogram consisting of the one or two consonants to be identified

and a single vowel on each side, lexical and other higher sources of knowledge could not

be used. Spectrogram readers identified stop consonants with a high degree of accuracy U

despite the limited information available.

The performance of the spectrogram readers was compared to that of human listeners

on the same tasks. In general, the listeners were able to identify stops more accurately

than the readers could. Some of the difference may be due to experience; listeners have I
had much more experience listening than the readers have had at labeling spectrograms.

The largest difference between listeners and readers was that while listeners correctly de-

termined the place of articulation over 98% of the time, readers had about 90% accuracy

I
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at place. This difference may be in part due to insufficiencies in the spectrographic rep-
resentation. Spectrogram readers may sometimes have a difficult time resolving acoustic

attributes, such as the direction and amount of formant motion, or the main location of

energy in the stop release. Often there are several attributes for place in the spectrogram,

which readers must selectively pay attention to. Errors by the readers typically occurred

on tokens where ambiguities or conflicts in the acoustic characteristics were visible in the

spectrogram.

I Expert spectrogram readers have learned to interpret the patterns visible in the spectro-

gram and to form phonetic judgements. It is the knowledge that they have learned and

the ability to assimilate it with an underlying knowledge of the principles of articulation,
that contributes to their expertise. While the performance of listeners surpasses that3 of spectrogram readers, the information on which listeners base their decisions is not

known. Spectrogram reading provides an opportunity to separate acoustic information3 from other sources, such as lexical, syntactic and semantic.

Knowledge obtained from spectrogram reading was incorporated in a rule-based system

for stop identification. The emphasis was on capturing the acoustic descriptions and

modeling the reasoning thought to be used by human spectrogram readers. Because

there is ambiguity in relating acoustic events to the underlying phonemic representation,

multiple descriptions and rules were used. As our knowledge about the acoustic correlates£ of speech sounds improves, the descriptions and rules can be modified.

Although this implementation does not reason from basic principles of speech production3 directly, these principles underly the knowledge representation and rule formulation. It
would be interesting to explore a system that could reason from basic principles. Such a5 system would know how to relate articulatory information to the acoustic characteristics

of speech sounds. For example, a principle of the system might be that the natural

frequencies of an acoustic tube are inversely proportional to the length of the tube.

Other properties of the system would account for the movements of the articulators and
the different sources used in speech production.

My experience in implementing the knowledge-based system for stop identification has3 been that formalizing the knowledge used in spectrogram reading is much harder than

I had anticipated. I believe that this is due to a variety of reasons. Perhaps the most

* important is that there appears to be much more happening in our visual system and in
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our thought processes than we actually express, even when asked to explain our reason-

ing. An example is the human ability to selectively pay attention to acoustic evidence,

particularly when there is contradictory evidence. In contrast, the system is relatively

conservative and rarely ignores evidence, even in the presence of conflicting eviderce.

This is in part because there is no belief in the acoustic evidence supplied to the sys-

tem. At times human experts will say things like "the formants are better for alveolar

than velar, but I like the release so much better as velar, that I'm willing to ignore the

formant transitions." The system is, by design, reluctant to use evidence as strongly

as a spectrogram reader will, as the conditions under which readers do so are not well

understood.I

A related issue is the identification of the acoustic attributes. It may be relatively easy

to develop algorithms to locate some of the attributes, such as location of the energy

in the release, and the strength of the release. Other attributes, such as the presence

of, a double-burst or of aspiration, might be quite difficult. As another example, the

formant transitions between stops and vowels may occur over a short time interval,

such as the 30 ms before and after the stop. Humans are often able to determine the

formant motion, while the problem formant tracking in general is still unsolved despite

many efforts (McCandless, 1974; Shafer and Rabiner, 1969; Yegnanarayana, 1978; Talkin,

1987). In order to use automatically determined acoustic attributes it will be necessary 3
to associate a goodness measure, or belief in the attribute. The problems of ambiguity

and uncertainty (both in the acoustic attributes and the rules) are similar to those in 5
diagnosis (Szolovitz and Pauker, 1978; Miller et al., 1984).

What about the applicability of rule-based systems to continuous speech recognition in

general? There are several problems with this approach. Of primary importance is our

level of understanding. Many more in-depth studies of continuous speech are needed 3
before we can hope to have enough knowledge to build such a system. In addition,

some of the problems in automatic speech recognition are probably handled better by

signal processing or pattern matching techniques. For example, I did not develop rules

to segment the acoustic signal. How, or whether, humans segment the spectrogram

remains to be determined; readers may label the spectrogram without explicitly locating

acoustic boundaries. Since acoustic segmentation is not well understood at this time, II
signal processing algorithms may be a more appropriate methodology (Glass, 1988). As

such, building a complete continuous speech recognition system using only a rule-based

1
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framework may not be the best application. However. using a rule-based system aF a
verification module, in limited tasks where our reasoning can be better quantified, may3 be advantageous for system development.

The primary reason for using a knowledge-based system was that the expression and use
of the knowledge is explicit. Every decision made by the system is justified by supporting
evidence. The system developer can inspect the rules and knowledge-base and understand
the interactions. However, in this particular implementation, in order to cause the system

to have reasonable behavior, some of the knowledge became obscured. For example, in

order to implement concepts like "if the evidence is uncertain, loosen the constraints and

believe the conclusions less," it was necessary to duplicate sets of rules. Rule duplication
results in the same knowledge being expressed in a variety of places, making it harder to3 modify the system. Some systems use "meta"-rules to handle such cases (Davis, 1981).

* This thesis has shown that some of the knowledge used in spectrogram reading can be

expressed in acoustic attributes, which may be combined using context dependent rules

to identify stops. The identification accuracy, across a wide variety of phonetic contexts
and a large number of talkers, is about 5% below that of spectrogram readers. While

* these results are encouraging, there is still much more that can be learned from the study

of speech. Spectrograms, and other time-frequency representations, are valuable aids for
understanding the dynamic characteristics of continuous speech.

1
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3 Appendix A

I Spectrogram reading token sets
I

Table A.1 shows the percent of overall listener identification rate and the percent of tokens that
were heard correctly (AC) by all listeners for each task. In selecting the balanced set, B, tokens
for the readers, I tried to obtain the same distributions. The resulting distributions for the
spectrogram test sets are given in Table A.1. Since there were multiple test sets for tasks 1, 2,3 and 4, both the individual and summed data are provided.

Table A.1: Error statistics for (top) listening and (bottom) reading tasks.

Number Identification Percent AC
Task of tokens rate (all correct)

1 633 97 78
2 313 88 59
3 -312 96 81
4 .75 85 48
5 160 93 73

Number Percent All Correct (AC)
Task of tokens Total Balanced set Extra tokens

1-1 52 42 79 0
1-2 53 42 79 0
1-3 52 42 79 0
1-4 53 42 79 0

11 210 142 79 0
2-1 52 42 59 0
2-2 50 42 60 0
2 102 42 60 0
3 51 45 77 12

4-1 51 37 50 24
4-2 51 33 48 19
4-3 51 35 48 23
4 153 35 49 22
5 46 59 73 36
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Appendix A. Spectrogram reading token sets

Table A.2 provides information for the spectrogram test sets with regard to the number of
talkers, sex of the talkers, and the sentence corpus from which the tokens were extracted. The
number of different vowel contexts are also given.

Table A.2: Distribution of tokens for task test sets: (top) sex and database, and (bottom) 1
vowel context.

Number Percent Percent Number of Percent Percent
Task of tokens TIMIT IC talkers male female

1-1 52 58 42 50 52 48
1-2 53 57 43 50 51 49
1-3 52 56 44 47 48 52 1
1-4 53 57 43 50 55 45
1 210 57 43 164 51 49

2-1 52 62 38 45 46 54
2-2 50 62 38 49 54 46
2 102 62 38 85 54 46
3 51 59 41 46 41 59 1

4-1 51 57 43 51 57 43
4-2 51 59 41 f. 46 49 j 51
4-3 51 1 63 37 50 51 49
4 153 59 41 128 48 52

r5i 46 67 33 43 59 41

Number Number of Number of Number I
of preceding following of vowel

Task tokens vowels vowels contexts
1-1 52 13 15 41 I
1-2 53 12 16 47
1-3 52 12 17 44
1-4 53 12 18 48

1 210 14 18 101

2-1 52 13 15 39
2-2 50 12 17 43

2 102 13 17 60 _
3 51 10 15 32
4-1 51 16 11 40
4-2 51 16 11 46
4-3 51 17 12 43
4 153 17 13 87

5] 46 13 12 36
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Appendix B

3 Listeners' identification of tokens in
spectrogram sets

I Tables B.1-B.5 are confusion matrices for the listeners on the subset of tokens used in the
spectrogram reading tests. While the tables are similar to those presented in Chapter 4, these5 provide a more accurate comparison to the readers' results.

Table B.1: Confusion matrix for listeners' identification of syllable-initial singleton stops in
spectrogram sets.

Number Percent Listener's response
Answer of tokens correct b I d 9 p I t I k none

b 42 91.5 1114 22 4 73 1 4
d 32 89.4 9 830 22 1 58 8_1 38 85.3 4 3 940 1 152 2

31 93.6 46 841 5 1 6
t 34 94.4 1 36 9 3 931 3 33 k 33 95.2 6 31 4 2 911 3

I Table B.2: Confusion matrix for listeners' identification of syllable-initial stops preceded by
alveolar strong fricatives in spectrogram sets.

A e Number Percent-r Listener's response
Answer of tokens correct b I d 1I 1 p I tT k Inone

b 15 77.8 10 27 2 1
d 16 59.0 85 3 56
9 8 76.4 55 17
P 18 89.5 17 145
t 24 87.9 23 2 190 1
k 21 92.6 1 1' 14 175_
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Appendix B. Listeners' identification of tokens in spectrogram sets 3

U
Table B.3: Confusion matrix for listeners' identification of syllable-initial stop-semivowel clus-
ters and syllable-initial affricates in spectrogram test set. 3

Number Percent Listener's response
Answer of tokens correct bI d p I t I k 6 1 none

b 7 91.4 64 2 4 i
d 6 65.0 39 21

3 100.0 30

4 87.5 1 35 2 2
t 9 91.1 1 82 1 5 1
k 7 98.6 69 1
T 7 71.4 2 4 50 14

_ 8 90.0 6 2 72

[

Table B.4: Confusion matrix for listeners' identification of non-syllable-initial singleton stops I
in spectrogram sets.

Number Percent Listener's response _ 5
Answer of tokens correct b_ dI 9 pI t k Inone

b 12 92.9 223 4 1 7 2 1 2
d 50 93.8 2 469 2 27

9 11 91.4 201 19

P36 85.1 87 1 3 613 8 8
_38. 8 1 3 1 35 58.4 3 278 4 2 409 3 1
k 34 93.4 1 1 22 5 15 635 1

U

Table B.5: Confusion matrix for listeners' identification of non-syllable-initial stops in homor- i
ganic nasal-stop clusters in spectrogram set.

Number Percent _ Listener's response _

Answer of tokens correct b d 9 t I k none
b 4 95.0 38 2 J
d 17 88.2 6 150 2 12
p 8 93.8 5 75
t 15 88.7 17 133 _

k 2 100.0 11 20
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3 Appendix C

IQualitative acoustic attributes

I Mora
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I VOT, prevoiced, F, motion into /c/, (3) mid VOT, aspirated, and (4) long VOT, aspi-
rated.
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Qualitative acoustic attributes for the stop release frequency location: (5) low frequency[primarily below 2 kllz], (6) mid frequency [primarily in the range 2-4 kHz], (7) high1
frequency (primarily above 4 kHz], (8) bimodal [two concentrations of energy, the lower Inear F2 and the higher at roughly three times the frequency of the lower], (9) broad[energy evenly distributed across all frequencies 0-8 kHzj, and (10) no release visible in I

the spectrogram.

I
I
I
I
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(11) /iko/ (12) /z]j/ (13) /odi/

Qualitative acoustic attributes for the stop release relative to the formant frequency
locations: (11) at and above F-4 with little energy below, (12) at and above F3 with
little energy below, (13) near F 2, with little energy above.

Qualitative acoustic attributes for the frequency distribution of energy in the release:
even [even over all frequencies, 0-8 kHz] (14)(21), diffuse [over a frequency region of 2-4
kHz] (3)(7)(13), compact [in a frequency range of 1-1.5 kHz] (5)(11)(20), and bimodal
[two concentrations of energy, the lower near F2 and the higher at roughly three times
the frequency of the lower] (4)(8)(20).

Qualitative acoustic attributes for strength of the release: weak [total energy is weak
relative to the vowel] (1)(4)(10), and strong [total energy is strong relative to the vowel]
(3)(7).
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IThu. (secoNCdS) TimeTi (-ocoed-) Titn (seco..ds)
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______________ .1 , . .

00.2 03 0.0 0.1' .4 00 .0.2 . 0 0.1 0. .3p(14) /obA/ (15) / ipeY / (16) W3d / (17) /igi/

Qualitative acoustic attributes for the motion of the second anid third formants: (14) F 2

falling into the stop on the left and the right, (1)F 2 adF3 falling into the stop on
the left, and in the aspiration on the right,[even F4 is falling on the left], (16) F2 and F3

rising into the stop from the right, the locus for F2 is near 1800 Hz, (17) F2 and F3 come

together into the stop, in what is referred to as a pinch.

Other, more subtle qualitative acoustic attributes: thin, pencil-like release (1)(2)(14),

double-buisL (4)(8)(14).
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(18) /izpi/ (19) / I=t (20) /izka/

Qualitative acoustic attributes present in the fricative: (18) "labial- tail," lowering of the
low-frequency energy limit of the fricative in anticipation of the stop, (19) incomplete
closure between the fricative and the stop, (20) "velar blob," concentration of energy at

the end of the fricative at roughly the same frequency location as the stop release.
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tions into the vowel indicate the place of articulation of the nasal.
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Appendix D

Rules

This appendix contains the rules used to identify stops. First an example of a backward-
chaining query rule is given, the remainder of the query rules all have the same form and
are not included. The next set of rules identify the voicing dimension, followed by rules
to identify the place of articulation. The place rules have been divided into four parts:
burst rules, formant transition rules, aspiration rules, and fricative rules. The final set
of rules map from the vowel identity to vowel features. Weaker versions of most of the
rules exist to handle uncertain evidence. Since these rules assert the same conclusions
but with a weaker strength they have not been included.

;;; example of a query fule

(defrule query-prevoicing ....
(declare (salience ?*voicing-query-salience2o))
(logical

(instance-of ?closure closure)
(interval-of ?closure ?token)
(instance-of ?token token)
(instance-of ?token stop)
(left-of ?left ?token)
(class ?left vowel nasal seivovel)
(goal (qualitative-attribute-of q-PREVOICED-yes ?closure)))

(not (explicit (qualitative-attribute-of q-PREVOICED-yeslq-PREVOICED-no [I-PREVOICED-maybe ?closure)))
(not (confirmed voicing-characteristic))
-> (bind ?answer #l(query-user ?closure 'prevoiced "Is there prevoicing during the closure interval? ))
(and ?answer (assert (qualitative-attribute-of ?answer ?closure))))
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3Appendix D. Rules

;; VOT rules for voicing decision

;;; this rule probably shouldn't be certain, but as long as it needs to be confirmed, it's ok

; if the next vowel is reduced, then VOT-short may indicate voiceless, but weakly

(defrule voicing-VOT-short ....

(declare (salience ?*voicing-rule-salience*))
(logical

(instance-of ?release release)

(interval-of ?release ?token)

(property-of syllable-initial ?token)

(not (property-of s-cluster ?token))
(qualitative-attribute-of q-VOT-SHORT-yes ?release)

(right-of ?right ?token)

(class ?right vowelisemivowel)

(split ((not (feature-of f-reduced ?right))

u> ; VOT short

(assert (add-to-score =(inccntr) ?token voicing-characteristic f-voiced *with-certainty*)))

((feature-of f-reduced ?right)
-> ; VOT short, reduced
(assert (add-to-score -(inccntr) ?token voicing-characteristic f-voiced *strong-evidence*)

(add-to-score =(inccntr) ?token voicing-characteristic f-voiceless *weak-evidence*))))))

(defrule voicing-VOT-long Il

(declare (salience ?evoicing-rule-saliencee))

(logical

(instance-of ?release release)
(interval-of ?release ?token)

(property-of syllable-initial ?token)
(qualitative-attribute-of q-VOT-LONG-yes ?release))

(not (confirmed voicing-characteristic))

-> ; VOT long

(assert (add-to-score u(inccntr) ?token voicing-characteristic f-voiceless *with-certainty*)))

stops in semivowel clusters have longer VOT's

therefore, if the VOT is medium and the stop is preceding a semivowel, it is likely to be voiced
(defrule voicing-VOT-cluster-not-short-or-long

(declare (salience ?evoicing-rule-salience*))

(logical

(instance-of ?release release)
(interval-of ?release ?token)
(property-of syllable-initial ?token)

(not (property-of s-cluster ?token))
(right-of ?right ?token)

(class ?right semivowel)

(qualitative-attribute-of q-VOT-SHORT-no ?release)

(qualitative-attribute-of q-VOT-LONG-no ?release))
(not (confirmed voicing-characteristic))

a> ; VOT not SHORT or LONG, in semivowel cluster
(assert (add-to-score -(inccntr) ?token voicing-characteristic f-ioiced *strong-evidence*)
(add-to-score (inccutr) ?token voicing-characteristic f-voiceless *weak-evidence*)))

I ;;; aspiration rules - some of these apply for all syllable-positions

aspirated-yes --> voiceless, independent of syllable-position
the inverse is not necessarily true

(defrule voicing-aspiration-yes-voiceless I'll

(declare (salience ?'voicing-rule-salience*))

(logical

(instance-of 'aspiration aspiration)
(interval-of ?aspiration ?token)
(instance-of ?release release)

(interval-of ?release ?token)3(property-of syllable-initial ?token)
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Appendix D. Rules 3
(qualitative-attribute-of q-VOT-SHORT-no ?release)

(qualitative-attribute-of q-VOT-LONG-no ?release)
(qualitative-attribute-of q-ASPIRATED-yes ?aspiration))

(not (confirmed voicing-characteristic))

-> ; VOT SHORT-no, LONG-no and ASPIRATED-yes
(assert (add-to-score -(inccntr) ?token voicing-characteristic f-voiceless estrong-evidence*))) 3

(defrule voicing-aspiration-no-voiced ..

(declare (salience ?evoicing-rule-saliencee))

(logical
(instance-of ?aspiration aspiration)
(interval-of ?aspiration ?token)
(instance-of ?release release)

(interval-of ?release ?token)

(property-of syllable-initial ?token)

(not (property-of s-cluster ?token))
(qualitative-attribute-of q-VOT-SEORT-no ?release)

(qualitative-attribute-of q-VOT-LONG-no ?release)

(qualitative-attribute-of q-ASPIRATED-no ?aspiration))

(not (confirmed voicing-characteristic))
=> ; VOT SHORT-no, LONG-no and ASPIRATED-no

(assert (add-to-score -(inccntr) ?token voicing-characteristic f-voiced *medium-evidence*)))

maybe aspiration and aid VOT may be a weak indicator for voiceless
(defrule voicing-aspiration-maybe-voiceless "

(declare (salience ?evoicing-rule-salience*))
(logical

(instance-of ?aspiration aspiration)
(interval-of ?aspiration ?token)

(instance-of ?release release)

(interval-of ?release ?token)

(property-of syllable-initial ?token)

(qualitative-attributs-of q-VOT-SHORT-no ?release)
(qualitative-attribute-of q-VOT-LOR-no ?release)

(qualitative-attribute-of q-ASPIRATED-maybe ?aspiration))

(not (confirmed voicing-characteristic))
=> ; VOT SHORT-no, LONG-no and ASPIRATED-maybe
(assert (add-to-score -(inccntr) ?token voicing-characteristic f-voiceless *medium-evidence-maybe*)))

aspiration and short may be a weak indicator for voiceless even if syllable-initial and unstressed
(defrule voicing-aspiration-reduced I" 1

(declare. (salience ?evoicing-rule-saliencee))

(logical
(instance-of ?aspiration aspiration)
(interval-of ?aspiration ?token) U
(instance-of ?release release)

(interval-of ?release ?token)
(property-of syllable-initial 'token)

(qualitative-attribute-of q-VOT-SHORT-yes) I
(qualitative-attribute-of q-ASPIRATED-yes ?aspiration)

(right-of ?right ?token)
(exists (feature-of f-reduced I f-syllabic ?right))) ; only fire once if both

(not (confirmed voicing-characteristic))
-> ; VOT SHORT-yes and ASPIRATED-yes, reduced
(assert (add-to-score -(inccntr) ?token voicing-characteristic f-voiceless *medium-evidence*)))

confirming rules for aspiration I
(defrule conf irm-voicing-aspirat ion-certain..

(declare (salience ?econfirm-salience*))
(logical

(instance-of ?aspiration aspiration)
(interval-of ?aspiration ?token)
(instance-of ?release release)
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(interval-of ?release ?token)
(property-of syllable-initial ?token)
(exists (confirm voicing-characteristic ?token f-voiceless ?cf))

(qualitative-attribute-of q-VOT-LOIG-yes ?release)

(qualitative-attribute-of q-ASPIRATED-yes ?aspiration))

(not (confirmed voicing-characteristic))

-> ; confirm: VOT LONG and ASPIRATED

(assert (add-to-score u(inccntr) ?token voicing-characteristic f-voiceless *with-certainty*)))

(defrule confirm-voicing-aspirat ion-medium ....

(declare (salience ?*confirm-salience*))
(logical

(instance-of ?aspiration aspiration)

(interval-of ?aspiration ?token)

(instance-of ?release release)

(interval-of ?release ?token)
(property-of syllable-initial ?token)

(exists (confirm voicing-characteristic ?token f-voiceless ?cf))
(qualitative-attribute-of q-VOT-LONG-yes ?release)
(qualitative-attribute-of q-ASPIRATED-maybe 'aspiration))

(not (confirmed voicing-characteristic))
-> ; confirm: VOT LONG and ASPIRATED-maybe

(assert (add-to-score -(inccntr) ?token voicing-characteristic f-voiceless *medium-evidencee)))

(defrule confirm-voicing-aspiration-no-certain

(declare (salience ?econfirm-salience*))

(logical

(instance-of ?aspiration aspiration)
(interval-of ?aspiration ?token)

(instance-of ?release release)
(interval-of ?release ?token)

(property-of syllable-initial ?token)
(not (property-of s-cluster ?token))
(exists (confirm voicing-characteristic ?token f-voiced ?cf))

(qualitative-attribute-of q-VOT-SHORT-yes ?release)

(not (confirmed voicing-characteristic))

=> ; confirm: VOT SHORT and not ASPIRATED
(assort (add-to-score l(inccntr) ?token voicing-characteristic f-voiced *ith-certainty*)))

(defrule ruleout-voicing-maybe-aspirated ....

(declare (salience ?econfirm-saliencee))

(logical
(instance-of ?aspiration aspiration)

(interval-of ?aspiration ?token)

(instance-of ?release release)
(interval-of ?release ?token)

(property-of syllable-initial ?token)

(exists (ruleout voicing-characteristic ?token f-voiced ?cf))
(qualitative-attribute-of q-VOT-SHORT-yes ?release)
(qualitative-attribute-of q-ASPIRATED-maybe ?aspiration))

(not (confirmed voicing-characteristic))

=> ; ruleout: VOT SORT and ASPIRATED-maybo

(assert (add-to-score =(iccntr) ?token voicing-characteristic f-voiced *weak-negative-evidence*)))

;;; for medium VOT's also need to look at more acoustic characteristics than just VOT

; might want to consider these also for non-syllable-initial singleton stops

;; rules for prevoicing
(defrule voicing-prevoicing-voiced-strong

(declare (salience ?evoicing-rule-saliencee))

(logical3 (instance-of ?closure closure)
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(interval-of ?closure ?token)
(instance-of ?release release)
(interval-of ?relaase ?token)
(left-of ?left ?token)
(class ?left vowel I nasal I sesivowel) ; not applicable if preceded by stop or fricative
(qualitative-attribute-of q-VOT-SHORT-no ?release)
(qualitative-attribute-of q-VOT-LOEG-no ?release)
(qualitative-attribute-of q-PREVOICED-yes ?closure))

(not (confirmed voicing-characteristic))
=> ; TOT SHORT-no, LONG-no and PREVOICED-yes
(assert (add-to-score -(inccntr) ?token voicing-characteristic f-voiced *strong-evidence0))

(defrule voicing-prevoicing-voiceless-mdium Il
(declare (salience ?*voicing-rulo-saliencee))
(logical

(instance-of ?closure closure)
(interval-of ?closure ?token)
(instance-of ?release release)
(interval-of ?release token)
(left-of ?left ?token)I
(class ?loft vowel I nasal I semiyvel)
(qualitative-attribute-of q-VOT-SHORT-no ?release)
(qualitative-attribute-of q-VOT-LOIG-no ?release)

(qualitative-attribute-of q-PREYOICED-no ?closure))U
(not (confirmed voicing-characteristic))
=> ; VOT SHORT-no, LONG-no end PREVOICED-no
(assert (add-to-score m(inccutr) ?token voicing-characteristic f-voiceless *medium-evidence*))

(defrule voicing-prevoicing-voicing-weak-iitial
(declare (salience ?evoicing-rule-saliencee)),
(logical

(instance-of ?closure closure)I
(interval-of ?closure ?token)
(instance-of ?release release)
(interval-of ?release ?token)
(left-of ?left ?token)
(class ?left vowel I nasal I semivowel)I
(property-of syllable-initial ?token)
(qualitative-attribute-of q-VOT-SNORTno ?reloaoe)
(qualitative-attribute-of q-VOT-LONG-no ?release)

(qualitative-attribute-of q-PREVOICED-uaybo ?closure))I
(not (confirmed voicing-charactristic))
a), ; VOT SNORT-no, LONG-no and PREVOICED-staybe
(assert (add-to-score u( inccntr) ?token voicing-characteristic f-voiceless enedium-evidence-maybe*)

(add-to-score u( inccntr) ?token voicing-characteristic f-voiced *strong-evidence-isaybes)))

non-initial, intervocalic are more likely to be prevoiced if voiced
(defrule voicing-prevoicing-voicing-weak-non-initial

(declare (salience ?evoicing-rule-saliencee))I
(logical

(instance-of ?closure closure)
(interval-of ?closure ?token)
(instance-of ?release release)

(interval-of ?release ?token)
(left-of ?left ?token)
(class ?left vowel I nasal I semivowel)
(property-of syllable-initial ?token)
(qualitative-attribute-of q-VOT-SHORT-no ?release)I
(qualitative-attribute-of q-VOT-LOIG-no ?release)
(qualitative-attribute-of q-PREVOICED-maybe ?closnre))

(not (confirmed voicing-characteristic))
-> ; VOT SNORT-no, LONG-no and PREVOICED-maybe. non-initialI
(assert (add-to-score a( inccntr) ?token voicing-characteristic f-voiceless *medium-evidencee)

(add-to-score -(inccntr) ?teken voicing-characteristic f-voiced *weak-evidencee)
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confirming rules for prevoicing

(defrule confi.m-voicintg-prevoicing-voiced-certain
(dcae(ineconfirm-tatvocngiuv ice )

(logical
(instance-of ?closure closure)
(interval-of ?closure ?token)

(instance-of ?release release)
(interval-of ?release ?token)
(left-of ?left token)
(class ?left vowel I nasal I semivowel)
(exists (confirm voicing-characteristic ?token f-voiced ?cf))
(qualitative-attribute-of q-VOT-SEORT-yes ?release)
(qualitative-attribute-of q-PIEVOICED-yes ?closure))

(not (confirmed voicing-characteristic))
-> ; confirm: VflT-SHORT-yes and PUEVOICED-yes
(a*ssert (add-to-score u(inccntr) ?token voicing-characteristic f-voiced *with-certainty0))

(defrule confirm-voicing-prevoicig-voiced-mdium ..

(declare (salience ?*confirm-saliencee))
(logical

(instance-of ?closure closure)
(interalc-of ?close rtoeles)
(intanal-of ?relse reloae)

(leftof ?lft'?o en)

(class ?left vowel I nasal I semivowel)

(exists (confirm voicing-characteristic ?token f-voiced ?cf))
(qualitative-attribute-of q-VOT-SHGRT-yes ?release)
(qualitative-attribute-of q-PREVOICED-uaybe ?closure))

(not (confirmed voicing-characteristic))
(split (=> ; confirm: VOT-SHORT-yes and PREVOICED-maybe

(assert (add-to-score ( inccntr) ?token voicing-characteristic f-voiced Imedium-evidence0))
((property-of syllable-non-initiallI yllable-posit ion-uni-own ?token)
O> ; confirm: VOT-SHORT-yes and PREvICED-maybe, non-initial

(assert (add-to-score i(inccntr) ?token voicing-characteristic f-voiceless weak-evidence*)))

;;; confirm voicing is voiceless
(defrule confirst-voicing-prvoic ing-voiceless-certin- initial ..

(declare (salience ?*confirm-saliencee)

(logical
(instance-of ?closure closure)
(interval-of ?closure ?token)
(instance-of ?release release)
(interval-of ?release ?token)
(left-of ?loft ?token)
(class ?left vowel I nasal I semivel)
(property-of syllable-initial 'token)
(exists (confirm voicing-characteristic ?token f-voiceless ?cf))
(qualitative-attribute-of q-VOT-LONG-yes ?release)
(qualitative-attribute-of q-PREVOICED-no ?closure))

(not (confirmed voicing-characteristic))
=> ; confirm: VOT-LONG-yes and PREVOICED-no

(assert (add-to-score -( inccutr) ?token voicing-characteristic f-voiceless ewith-certainty*))

(defrule ruleout-?oicing-prevoicing-voiced-weak
(declare (salience ?*ofr-aine)
(logical

(instance-of ?closure closure)
(interval-of ?closure ?token)
(instance-of ?release release)
(interval-of ?release ?token)3 (left-of ?left token)

3 157



I
Appendix D. Rules 3

(class ?left vowel I nasal I semivowel)
(not (property-of syllable-initial ?token))

(exists (ruleout voicing-characteristic ?token f-voiced ?cf))

(qualitative-attribute-of q-VOT-SHORT-yes ?release)

(qualitative-attribute-of q-PREVOICED-no ?closure))
(not (confirmed voicing-characteristic))
-> ; ruleout: VOT short and not prevoiced
(assert (add-to-score u(inccntr) ?token voicing-characteristic f-voiced *weak-negative-evidence*)))

voicing VOT rules for non-initial I
(defrule voicing-non-initial-OT-long

(declare (salience ?evoicing-desperate*))

(instance-of ?release release)

(interval-of ?7-lease ?token)

(right-of ?right ?token)
(class ?right vowel) I
(not (property-of syllable-initial ?token))

(qualitative-attribute-of q-VOT-LONG-yes ?release))

(not (confirmed voicing-characteristic))
-> ; VOT long, non-initial I
(assert (add-to-score =(inccntr) ?token voicing-characteristic f-voiceless *uedium-evidence-maybe*)))

(def rule voicing-non-init ial-VOT-not-short-or-long

(declare (salience ?evoicing-rule-saliencee))

(logical
(instance-of ?release release)

(interval-of ?release ?token)
(right-of ?right ?token)

(class ?right vowel)
(not (property-of syllable-initial ?token))
(qualitative-attribute-of q-VOT-SHORT-no ?release)

(qualitative-attribute-of q-VOT-LOIG-no ?release))
(not (confirmed voicing-characteristic)) I
=> VOT not SHORT or LOIG, non-initial

(assert (add-to-score =(inccntr) ?token voicing-characteristic f-voiced eweak-evidence-maybe*)

(add-to-score =(inccntr) ?token voicing-characteristic f-voiceless *medium-evidence-maybe))) 3
;;; aspiration rules for non-initial

these are independent of VOT
the presence of aspiration indicates voiceless, but I
the lack of aspiration does not necessarily indicate voiced!

(defrule voicing-non-initial-aspiration-yes -.
(declare (salience ?evoicing-rule-saliencee))

(logical
(instance-of ?aspiration aspiration)

(interval-of ?aspiration ?token)

(instance-of ?release release)
(interval-of ?release ?token)
(not (property-of syllable-initial ?token))

(qualitative-attribute-of q-ISPIRATED-yes ?aspiration))

(not (conirmed voic=n;-characteristic))
=> ; non-initial: ISPIRATED-yes
(assert (add-to-score -(inccntr) ?token voicing-characteristic f-voiceless *strong-evidencee)))

(defrule voicing-non-initial-aspiration-maybe ....

(declare (salience ?evoicing-rule-saliencee)) I
(logicac

(instance-of ?aspiration aspiration)

(interval-of ?aspiration ftoken) I
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(instance-of ?release release)
(interval-of ?release ?token)
(not (property-of syllable-initial ?token)) Tsia o)

M>3 non-initial. &SPIRATED-maybe
(assert (add-to-score u(lnccntr) ?token voicing-characteristic f-voiceless *medium-qvidence))

these aspiration rules are secondary, end only fire after VOT is known

(defrale voicing-non-initial-short-aspirtion-yes
ifecthe spinc n ot yllab le-ti te n iain niae ocees ee f a ssot

(log ical
(instance-of ?aspiration aspiration)
(interval-of ?aspiration. ?token)
(instance-of ?relese release)
(interval-of ?release ?token)
(not (property-of syllable-initial ?token))
(qualitative-attribute-of q-VOT-SHORT-yes ?release)

(qualitative-attribute-of q-ASPIRATED-yes ?aspirat ion))
(not (confirmed voicing-characteristic))U a> ; non-initial: VOT SHORT-yes and ASPIRATED-yes
(assert (add-to-score -(inccntr) ?token voicing-characteristic f-voiceless *Medium-evidence*)))

(def rule voicing-non-initial-short-aspiration-maybe

(declare (salience 'evoicing-rule-saliencee))

(instance-of ?sspirat ion aspiration)
(interval-of ?aspiration ?token)
(instance-of ?release release)I (interval-of ?release ?token)
(property-of syllable-non-initiallIsyl-lable-position-nknown ?token)
(qualitative-attribute-of q-VOT-SKORT-yes ?release)
(qualitative-attribute-of q-ASPIRLTED-saybe 'aspiration))I (not (confirmed voicing-characteristic))

-> ; non-initial: VOT SHORT-yes and ASPIRATED-maybe
(assert (add-to-score n(inccntr) ?token voicing-characteristic f-voiceless Suedium-evidence-maybe*)))

voicing from fi motion

(dofrule voicing-Fl-motion-right

(declare (salience ?evoicing-desperatee)

(instance-of ?release release)
(interval-of ?release ?token)
(right-of ?right ?token)
(class ?right vowelisemivovel)

(qualitative-attribute-of q-DURATIOI-SHORT-no ?right)
(qualitative-attribute-of q-F1-FILLING-yes ?right)
(qualitative-attribute-of q-FI-AII-LARGE-yes ?right))

(not (confirm voicing-characteristic ?token ?vcg ?cf))
(not (confirmed voicing-characteristic))
-> ; lots of R71 motion favors voiced
(assert (add-to-score u(inccntr) ?token voicing-characteristic f-voiced *weak-evidence*))

(defrule voicing-Fl-motion-left Il
(declare (salience ?evoicing-desperatoe))
(logical

(instance-of ?release release)
(interval-of ?release ?token)

(left-of ?left ?token)5 (class ?left vowelisivowel)
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(qualitative-attribute-of q-DURtATIOR-SNORT-no ?left)
(qualitative-attribute-of q-F1-FALLING-yes ?left)
(qualitative-attribute-of q-Fi-AIT-LARGE-yes ?left))1

(not (confirm voicing-characteristic ?token ?vCg ?Cf))
(not (confirmed voicing-characteristic))
=> ; lots of LF1 notion favors voiced

(assert (add-to-score -(inccntr) 'token voicing-characteristic f-voiced *weak-evidence*)))

;;voicing for non-initial from total stop duration3

(def rule voicing-non-init ial-durat ionL-short"I
(declare (salience ?evoicing-rule-saliencee))
(logical

(instance-of ?closure closure)I
(interval-of ?closur* ?token)
(instance-of ?release release)
(interval-of ?release ?token)
(qulitative-attribute-of q-DURATIOI-SEORT-yes ?token))

(not (property-of syllable-initial ?token))
(not (confirmed voicing-characteristic))

=>;duration short -- > voiced
(assert (add-to-score a(inccntr) ?token voicing-characteristic f-voiced emedium-evidencee))

(def rule voicing-from-semiTvel-duration-long *

(declare (salience ?evoicing-rule-saliencee)
(logicalI

(instance-of ?release release)
(interval-of ?release ?token)
(property-of syllable-initial ?token)

(right-of ?right ?token)

(class ?right semivowel)
(qualitative-attribute-of q-DURATION-LOIG-yes ?righit))

(not (confirmed voicing-characteristic))

(assert (add-to-score -(inccntr) ?token voicing-characteristic f-voiced emedium-evidencee))

(defrule voicing-from-se~ivOWel-durat ion-shortI

(declare (salience ?evoicing-rale-saliencee))
(logical

(instance-of ?release release)
(interval-of ?release ?token)
(property-of syllable-initial ?token)U
(not (property-of s-cluster token))
(right-of ?right token)
(class ?right semivowel)
(qualitative-attribute-of q--DURATION-SKORT-yes 'right))I

(not (confirmed voicing-characteristic))

=> ; LONG semivowel -- > voiced
(assert (add-to-score -(inccutr) ?token voicing-characteristic f-voiceless emedium-eiidencee))
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those rules all use features of the vowel derived from the vowel id

another version uses formant locations directly and a third tries
;;;to derive the vowel features

3;; ; rules for place identification

primary burst rules

(defrule place-burst-not-visible

(declare (salience ?eplace-rule-saliencee))
(logical

(instance-of ?release release)
(interval-of ?release ?token)

(property-of syllable-initial ?token)

(qualitative-attribute-of q-BURST-VISIBLE-no ?release))
(not (confirmed place-of-articulation))

=> ; place: burst not-visible
(assert (add-to-score -(inccntz) ?token place-of-articulation f-labial estrong-evidence*)))

(defrule -place-burst-broad
(declare (salience ?*place-rule-salience*))

(logical
(instance-of ?release release)
(interval-of ?release ?token)

(qualitative-attribute-of q-BURST-LOCATION-BIRWD-yes ?release))
(not (confirmed place-of-articulation))
(split ((property-of syllable-initial ?token)

-> ; place: burst-broad
(assert (add-to-score =(inccntr) ?token place-of-articulation f-labial *strong-evidence)))

((not (property-of syllable-initial ?token))

-> ; place: burst-broad
(assert (add-to-score -(inccntr) ?token place-of-articulation f-labial *medium-evidence*)
(add-to-score l(inccntr) ?token place-of-articulation f-alveolar *weak-evidences)))))

(defrule place-pencil-like ""

(declare (salience ?eplace-rule-saliencee))
(logical

(instance-of ?release release)

(interval-of ?release ?token)
(property-of syllable-initial ?token)
check that there is already some belief in labial

ie. don't ask unless there is some reason to believe it!
(exists (add-to-score ?uniqueness-number ?token place-of-articulation f-labial ?atk:(> (oval ?ant) 0)))
(qualitative-attribute-of q-THIN-yes ?release))

(not (confirmed place-of-articulation))

-> ; place: pencil-like

(assert (add-to-score w(inccntr) ?token place-of-articulation f-labial estrong-evidencee)))

(defrule place-HF ....
(declare (salience ?eplace-rule-saliencee))

(logical
(instance-of ?release release)

(interval-of ?release ?token)
(right-of ?right ?token)
(property-of syllable-initial I syllable-non-initial I s-cluster ?token)
(qualitative-attribute-of q-BURST-LOCATIO-EF-yes ?release))

(not (confirmed place-of-articulation))
(case ((class ?right vowel)

(feature-of f-front ?right)
(not %'Ieature-of f-roundlf-retroflex ?right))

=> ; place: HF, front vowel
(assert (add-to-score =(inccntr) ?token place-of-articulation f-labial *weak-evidence*)

(add-to-score l(inccutr) ?token place-of-articulation f-velar *edium-evidencee))))3> ; place: HF
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(assert (add-to-score (inccntr) ?token place-of-articulation f-alveolar *strong-evidence*)))

ask this only if deciding between labial and alveolar
(defrule place-wedge-like ..

(declare (salience ?*place-rmle-saliencee))
(logical

(instance-of ?release release)

(interval-of ?release ?token)

(property-of syllable-initial ?token)

check that there is already some belief in labial and some in alveolar
is. don't ask unless there is some reason to believe it!

(exists (add-to-score ?uniqueness-numberl ?token place-of-articulation f-labial ?amtlk:(> (eval ?amtl) 0)))

(exists (add-to-score uniqueness-number2 ?token place-of-articulation f-alveolar ?amt2k:(> (eval ?amt2) 0)))

(qualitative-attribute-of q-THICK-yes ?release))

(not (confirmed place-of-articulation))

=> ; place: wedge-like

(assert (add-to-score =(inccntr) ?token place-of-articulation f-labial emedium-negative-evidence*)))

(defrule place-F ...
(declare (salience ?*place-rule-saliencee))

(logical

(instance-of ?release release)

(interval-of ?release ?token)
(property-of syllable-initial I syllable-non-initial I s-cluster ?token)
(right-of ?right ?token)
(class ?right vowelisemivowel)
(qualitative-attribute-of q-BURST-LOCITIO-HF-yes ?release))

(not (confirmed place-of-articulation))

(case ((feature-of f-retroflex ?right)
-> ; place: HF, retroflex vowel
(assert (add-to-score =(inccntr) ?token place-of-articulation f-alveolar *strong-evidence*)

(add-to-score u(inccntr) ?token place-of-articulation f-velar *medium-evidence*)))
((feature-of f-round ?right)

-> ; place: HF, round vowel

(assert (add-to-score -(inccntr) ?token place-of-articulation f-alveolar *strong-evidence*)))

((feature-of f-back ?right)
S> ; place: HF, back vowel
(assert (add-to-score (inccntr) ?token place-of-articulation f-alveolar *medium-evidence*)

(add-to-score *(inccntr) ?token place-of-articulation f-velar *weak-evidencee)))
((feature-of f-front ?right)

a> ; place: HF, front vowel
(assert (add-to-score -(inccntr) ?token place-of-articulation f-velar *strong-evidencee)

(add-to-score =(inccntr) ?token place-of-articulation f-labial eweak-evidencee)

(add-to-score u(inccntr) ?token place-of-articulation f-alveolar *weak-evidences)))

((feature-of f-schwa ?right)) ; schwa could be underlying round or retro
-> place: OF, schwa ; this should be a weak assertion

(assert (add-to-score =(inccntr) ?token place-of-articulation f-alveolar *weak-evidence))))

(defrule place-LF ".

(declare (salience ?*place-rule-saliencee))
(logical

(instance-of ?release release)

(interval-of ?release ?token)

(property-of syllable-initial I syllable-non-initial I a-cluster ?token)
(right-of ?right ?token)
(qualitative-attribute-of q-BURST-LOCATION-LF-yes ?release)

(class ?right vowellaemsivowel)

(not (confirmed place-of-articulation))
(case ((exists (feature-of f-roundif-retrofrlex ?right))

=> ; place: low, roundfretroflex vowel

(assert (add-to-score -(inccntr) ?token place-of-articulation f-alveolar eweak-evidencee)
(add-to-score u(inccntr) ?token place-of-articulation f-velar estrong-evidencee)

(add-to-score u(inccntr) ?token place-of-articulation f-labial *medium-evidence*)))

((feature-of f-back ?right)
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*>;place: low, back vowel
(assort (add-to-score u(inccntr) ?token place-of-articulation f-velar estrong-evidence*)U (add-to-score -(iznccntr) ?token place-of-articulation f-labial *mediui-evidence*)))

=>place: ofon oe
(assert (add-I .i-score u(inccntr) ?token place-of-articulation f-volar *medium-negative-evideutce*)
(add-to-score * (inccntr) ?token place-of-art iculat ion f-alveolar emedium-negat ive-evidence*) )))))

(defrule place-location-bimodal Il
(declare (salience ?eplace-rule-saliencee))I (logical

(instance-of ?release release)
(interval-of ?release ?token)
(property-of syllable-initial ?token)
(right-of ?right ?token)
(class ?right vowel I semivowel)

(not (exists (feature-of f-front ?right)))
(qualitative-attribute-of q-BURST-LOCATIOI-BIMODAL-yes ?release))

(not (confirmed place-of-articulation))
-> ; place: bimodal, back vowel
(assert (add-to-score -(inccntr) ?token place-of-articulation f-velar *strong-evidenceW))

,;relative (to formant locations) location rules
(defrule place-below-F2"I

(declare (salience ?*place-rule-salience*))I (logical
(instance-of ?release release)
(interval-of ?release ?token)
(property-of syllable-initial I syllable-non-initial I s-cluster ?token)
(qualitative-attribute-of q-BURST-P.EI.&TIVE-LOCTIOI-BELO-F2-yes ?release))

(not (confirmed place-of-articulation))
=> ;place: burst below F2
(assert (add-to-score u(inccutr) ?token place-of-articulation f-labial. *Medium-evidenceW)

(defrule place-compact-at-F2 Il
(declare (salience ?*place-rumle-saliencoo))
(logical

(instance-of ?release release)
(proertyl-of sylleale-ionita) ylbenniita -lse tkn
(intral-of srllale-nta ?token)nnintlIa-lstrtkn
(qualitative-attribute-of q-BURST-P.ELATIVE-LOCATION-BINODAL-no ?release) ; inhibit this rule if bimodal
(qualitative-attribute-of q-BURtST-RELATIVE-LOCATIaOIT-F2-yes ?release)

(not (qualitative-attribute-of q-BURST-EUERGY-DISTIBUTION-CONPACT-no ?release))

0> place: compact at F2, back vowel
(assert (add-to-score u( inccutr) ?token place-of-art iculat ion f-velar emedium-evidencee)
(add-to-score u(inccntr) ?token place-of-articulation f-labial siedium-evidenceW)

(defrule place-compact-abovo-F2 1
(declare (salience 'eplace-rule-saliencee)
(logical

(instance-of ?release release)
(interval-of ?release ?token)
(propexty-of syllable-initial I syllable-non-initial I s-cluster ?token)
(qualitative-attribute-of q-BURST-RELATIVE-LOCATION-BINfODAL-no ?release) ;inhibit this rule if bimodal
(qualitative-attribute-of q-DURSr-ftELTIVE-LOCATIOU-ABOVE-F2-yes ?release)U(nt (onfitdae-fa riuto -US-n)) YDSRBiO-OMITn rla

(not (ofima lae-oati uto -US-EnYDI))U O-OPTn rlae)
=> plce:burst above F2

(asr (add-to-score *( inccntr) ?token place-of-art iculat ion f-velar estrong-evidenceeD)
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(defrmle place-above-F3 ..

(declare (salience ?*place-rule-salience*))

(logical
(instance-of ?release release)
(interval-of ?release ?token)

(property-of syllable-initial i syllable-non-initial I s-cluster ?token)
(qualitative-attribute-of q-BURST-RELATIVE-LOCATIOI-ABOVE-F3-yes ?release))

(not (confirmed place-of-articulation))
-> ; place: burst above F3

(assert (add-to-score =(inccntr) ?token place-of-articulation f-alveolar *weak-evidence*)))

(defrule place-above-F4 ".

(declare (salience ?*place-rule-saliencee))
(logical I
(instance-of ?release release)

(interval-of ?release ?token)

(property-of syllable-initial I syllable-non-initial I a-cluster ?token)
(qualitative-attribute-of q-BURST-RELATIVE-LOCATIOI-ABOVE-F4-yes ?release)) I

(not (confirmed place-of-articulation))
-> ; place: burst above F4
(assert (add-to-score -(inccntr) ?token place-of-articulation f-alveolar *strong-evidence))) I

(defrule place-relative-location-bimodal ....
(declare (salience ?*place-rule-saliencee))
(logical

(instance-of ?release release)
(interval-of ?release ?token) I
(property-of syllable-initial I syllable-non-initial I a-cluster ?token)

(right-of ?right ?token)
(class ?right vowel I semivowel)
(not (exists (feature-of f-front ?right))) I
(qualitative-attribute-of q-BURST-RELATIVE-LOCATION-BINODAL-yes ?release))

(not (confirmed place-of-articulation))

-> ; place: burst bimodal, back vowel

(assert (add-to-score =(inccntr) ?token place-of-articulation f-velar *strong-evidence*)))

(defrule place-double-burst ""

(declare (salience ?eplace-rule-saliencee))

(logical
(instance-of ?release release)
(interval-of ?release ?token)
(property-of syllable-initial I syllable-non-initial ?token)

check that there is already some belief in velar

(exists (add-to-score ?uniqueness-number ?token place-of-articulation f-velar ?amtk:(> (eval ?amt) 0))) I
(qualitative-attribute-of q-DOUBLE-BURST-yes ?release))

(not (confirmed place-of-articulation))
=> ; place: double burst

(assert (add-to-score -(inccntr) ?token place-of-articulation f-velar *strong-evidence*))) I
;;; specific rule to differentiate fron t and k. the front k's sometimes have

;;; a weakening in the release, giving almost a bimodal appearance, due to a zero
(defrule place-top-spectral-zero "I'

(declare (salience ?econfirm-saliencee))
(logical

(instance-of ?token token)

(class ?token stop)

(instance-of ?release release)
(interval-of ?release ?token)

(right-of ?right ?token)

(class ?right vowellsemivowel)

(feature-of f-front ?right))

(not (confirmed place-of-articulation))
(qualitative-attribute-of q-BURST-LOCATIO-EF-yesIq-BURST-LOCATIaN-HF-maybe ?release)
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; only if can't decide between front velar and front alveolar
(top-candidate place-of-articulation ?token f-velarlalveolar ?amtlk:(> ?amtl 0))
(2nd-candidate place-of-articulation ?token f-velarlalveolar ?amt2k:(> ?amt2 0))

(split ((qualitative-attribute-of q-SPECTRAL-ZERO-yes ?release)
=> ; place top: spectral zero in release
(assert (add-to-score =(inccntr) ?token place-of-articulation f-velar *medium-evidences)))
((qualitative-attribute-of q-SPECTRAL-ZERO-no ?release)
=> ; place top: no spectral zero in release3 (assert (add-to-score -(inccntr) ?token place-of-articulation f-alveolar *weak-evidence#)))))

; energy distribution rules
*; compact/diffuse rules
(defrule place-energy-compact

(declare (salience ?*place-rule-salience*))
(logical

(instance-of ?release release)
(interval-of ?release ?token)

(right-of ?right ?token)
(property-of syllable-initial I syllable-non-initial I s-cluster 'token)
(qualitative-attribute-of q-BURST-ENERGY-DISTRIBUTIOU-COMPACT-yes ?release))

(not (confirmed place-of-articulation))
(case ((class ?right vowelisemivowel)
(exists (feature-of f-roundjf-retroflexlf-lateral ?right)))
> place: compact,"round or retroflex
(assert (add-to-score -(inccntr) ?token place-of-articulation f-labial *medium-evidence*)
(add-to-score -(inccntr) ?token place-of-articulation f-alveolar eweak-evidence*)))
-> ; place: compact

(assert (add-to-score =(inccntr) ?token place-of-articulation f-velar *strong-evidence*)))

(defrule place-energy-diffuse-F-or-F

(declare (salience ?*place-rule-saliencee))
(logical

(instance-of ?release release)

(interval-of ?release ?token)

(right-of ?right ?token)
(property-of syllable-initial I syllable-non-initial I s-cluster ?token)
(exists (qualitative-attribute-of q-BURST-LOCATIO-RF-yeslq-BURST-LOCATION-BF-maybe I
q-BURST-LOCATION-HF-yes I q-BURST-LOCATIO-F-maybe ?releape))

(qualitative-attribute-of q-BURST-EBERGY-DISTRIBUTIO-DIFFUSE-yes ?release))
(not (confirmed place-of-articulation))
(case ((feature-of f-front ?right))3> ; place: diffuse Hf or HF, front vowel

(assert (add-to-score -(inccntr) ?token place-of-articulation f-velar emedium-evidencee)))
=> ; place: diffuse HF or HF
(assert (add-to-score -(inccntr) ?token place-of-articulation f-alveolar *medium-evidence*)5 (add-to-score -(inccntr) ?token place-of-articulation f-labial *weak-.vidence*)))

(defrule place-energy-diffuse-LF ..
(declare (salience ?eplace-rule-saliencee))
(logical

(instance-of ?release release)
(interval-of ?release ?token)
(right-of ?right ?token)
(property-of syllable-initial I syllable-non-initial I s-cluster ?token)
(qualitative-attribute-of q-BURST-LOCATIO-LF-yeseq-BURST-LOCATION-LF-maybe ?release)
(qualitative-attribute-of q-BURST-EKER--DISTRIBUTIOU-DIFFUSE-yes ?release))

(n°.t (confirmed place-of-articulation))
.> place: diffuse LF

(abjert (add-to-score -(inccntr) ?token place-of-articulation f-labial eMedium-evidencee)))

for back vowels the bimodal nature is- 1/4 3/4
for front vowels it is more 1/2 wavelength.3 (defrule place-energy-bimodal ..
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(declare (salience ?eplace-rule-saliencee))
(logical I

(instance-of ?release release)
(interval-of ?release ?token)
(property-of syllable-initial I syllable-non-initial I s-cluster ?token)
(qualitative-attribute-of q-BURST-ENERGY-DISTRIBUTIOI-BINODAL-yes ?release))

(not (confirmed place-of-articulation))
-> ; place: energy distribution bimodal
(assert (add-to-score -(inccntr) ?token place-of-articulation f-velar *strong-evidence)))

(defrule place-energy-even-initial ....
(declare (salience ?*place-rule-salience*))
(logical
(instance-of ?release release)
(interval-of ?release ?token) I
(qualitative-attribute-of q-BURST-EIERGY-DISTRIBUTIOU-EVE-yes ?release))

(not (confirmed place-of-articulation))
(case ((property-of syllable-initial ?token)

=> ; place: energy distribution even I
(assert (add-to-score -(inccntr) ?token place-of-articulation f-labial *strong-evidence)))

((not (property-of syllable-initial ?token))
-> ; place: energy distribution even
(assert (add-to-score -(inccntr) ?token place-of-articulation f-labial emeaium-evidencee)))))

;;; strength rules

(defrule place-strength-strong-initial ....
(declare (salience ?*place-rule-saliencee))
(logical

(instance-of ?release release)

(interval-of ?release ?token)
(qualitative-attribute-of q-STRENGTH-STROIG-yes ?release)
(not (property-of semivoel-cluster ?token))) ; hard to assess strength in clusters

(not (confirmed place-of-articulation))
(case ((property-of syllable-initial ?token)
(> ; place: release strong
(assert (add-to-score u(inccntr) ?token place-of-articulation f-velar edi-evidence*)
(add-to-score -(intccntr) ?token place-of-articulation f-alveolar emedium-evidence*))

((property-of syllable-non-initiall s-cluster ?token) I
=> ; place: release strong
(assert (add-to-score =(i :cntr) ?token place-of-articulation f-velar euedium-evidence*)
(add-to-score -(inccntr) ?token place-of-articulation f-alveolar eaedium-evidencee))))) 3
(defrule place-strength-weak-initial ""
(declare (salience ?eplace-rule-saliencee))
(logical

(instance-of ?release release)

(interval-of ?release ?token)
(qualitative-attribute-of q-STRENGTH-WEAI-yes ?release))

(not (confirmed place-of-articulation))
(case ((property-of syllable-initial ?token)

=> ; place: release weak
(assert (add-to-score a(inccntr) ?token place-of-articulation f-labial *medium-evidence)))

((property-of syllable-non-initialIs-cluster ?token)
-> place: release weak
(assert (add-to-score u(inccntr) ?token place-of-articulation f-labial *weak-evidencee))))) I

; aspiration strength
(defrule place-aspiration-strength "strong aspiration and weak release supports labial"

(declare (salience ?eplace-rule-saliencee)) I
(logical

(instance-of ?release release)
(interval-of ?release ?token)
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(instance-of ?aspiration aspiration)
(interval-of ?aspiration ?token)
(property-of syllable-initial ?token)
(qualitative-attribute-of q-STREUGTH-IELk-yes ?release)
(qualitative-attribute-of q-STRENGTH-STROG-yes ?aspiration))

(not (confirmed place-of-articulation))
=> ; place: release weak, aspiration strong
(assert (add-to-score m(inccntr) ?token place-of-articulation f-labial *medium-evidence*)))

I
I
I
I
I
I
I
I
1
I
I
I
I
I
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rules are shown for the right-context, the same rules exist for the left

,, formant rules -- rules based on features, specified by identity
if the vowel is short, then don't use formant motion because it may

be misleading, only use combined motion rules as low priority

(def rule formants-F2-rising-large I'.
(declare (salience ?eformant-salience*))

(logical
(instance-of ?token token)

(class ?token stop)

(right-of ?right ?token)
(class ?right vowelisemivowel)

(qualitative-attribute-of q-DURATIOI-SHORT-no ?right)

(qualitative-attribute-of q-F2-RISIIG-yes ?right)

(qualitative-attribute-of q-F2-MfT-LARGE-yes ?right))
(not (confirmed place-of-articulation))

(case ((exists (feature-of f-backlf-round ?right))

-> place: RF2 rising into stop, back or round vowel
(assert (add-to-score =(inccntr) ?token place-of-articulation f-labial *medium-negative-evidence*)

(add-to-score a(inccntr) ?token place-of-articulation f-alveolar estrong-evidencee)))

((feature-of f-front ?right)

-> place: RF2 rising into stop, front vowel

(assert (add-to-score u(inccntr) ?token place-of-articulation f-velar *strong-evidence*)

(add-to-score -(inccntr) ?token place-of-articulation f-labial *strong-negative-evidence*)))

(otherwise

-> ; place: RF2 rising into stop, vowel unknown

- (assert (add-to-score -(inccntr) ?token place-of-articulation f-labial emedium-negative-evidence*))))

(defrule formants-F2-rising-large-fb ..

(declare (salience ?*formant-salience*))

(logical

(instance-of ?token token)

(class ?token stop)

(right-of ?right ?token)
(class ?right vowellsemivowel)

(left-of ?left ?token)

(class ?left vowelisemivowel)
(qualitative-attribute-of q-DURITIO-SHORT-no ?right)

(qualitative-attribute-of q-F2-P.ISIRG-yes ?right)

(qualitative-attribute-of q-F2-ANT-LARGE-yes ?right))
(not (confirmed place-of-articulation))

(exists (feature-of f-backlf-round ?right))

(case ((feature-of f-front ?left)

a> ; place: 312 rising into stop, back or round vowel, left front

(assert (add-to-scot. u(inccntr) ?token place-of-articulation f-velar emediu-evidencee)))

(otherwise

=> ; place: RF2 rising into stop, back or round vowel, left front

(assert (add-to-score u(inccntr) ?token place-of-articulation f-velar eweak-evidencee)))))

(defrule formants-R2-rising-mdium I'll

(declare (salience ?eformant-salience*))

(logical
(instance-of ?token token)

(class ?token stop)

(right-of ?right ?token)

(class ?right vowellsemivowel)
(qualitative-attribute-of q-DURATION-SHORT-no ?right)

(qualitative-attribute-of q-F2-RISIIG-yes ?right)

(qualitative-attribute-of q-F2-ANT-LARGE-maybe ?right))
(not (confirmed place-of-articulation))

(case ((exists (feature-of f-backlf-round ?right))
-> ; place: RF2 rising into stop, back or round vowel

(assert (add-to-score =(inccntr) ?token place-of-articulation f-labial emedium-negative-evidence-maybee)
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(add-to-score u(inccntr) ?token place-of-articulation f-alveolar estrong-evidence-utaybe*)
(add-to-score =(inccutr) ?token place-of-articulation f-velar eveak-evidence-maybee)))

((feature-of f-front ?right)
=> ;place: 112 rising into stop, front vowel
(assort (add-to-score -( inccntr) ?token place-of-articulation f-velar estrong-evidence-naybe*)

(add-to-score -(inccntr) ?token place-of-articulation f-labial *strong-negative-evidence-maybe*)))

S> ;place: 112 rising into stop, vowel unknown
(assert (add-to-score -(inccntx-) ?token place-of-articulation f-labial enedium-negative-evidence-maybe*)))))

(def rule formants-11-ris ing-small..
(declare (salience 'eforut-salience*))
(logical

(instance-of ?token token)
(class ?token stop)
(right-of ?right ?token)

(class ?right vowellsemivowel)
(qualitative-attribute-of q-DURATIOU-SHORT-no ?right)
(qualitative-attribute-of q-F2-RISING-yes ?right)
(qualitative-attribute-of q-F2-AMT-SMALL-yes ?right))

(not (confirmed place-of-articulation))
(case ((exists (feature-of f-backlf-round 'right))I -> ; place: 172 rising into stop, back or round vowel

(assert (add-to-score -(inccntr) ?token place-of-articulation f-labial *weak-negative-evidence*)
(add-to-score -( inccntr) ?token place-of-art iculat ion f-alveolar *medium-evidencee)
(add-to-score -(inkccntr) ?token place-of-art iculat ion f-velar eweak-evidence*))

((feature-of f-front ?right)I -> ; place: 172 rising into stop, front vowel
(assert (add-to-score -(inccntr) 'token place-of-articulation f-labial eweak-negat ive-evidence e)
(add-to-score -(in~ccntr) ?token place-of-articulation f-velar *weak-evidence*)
(add-to-score -(inccntr) ?token place-of-articulation f-alveolar *weak-evidencee))I (otherwise

a> ; place: 112 rising into stop, vowel unknown

(assert (add-to-score -(inccntr) ?token place-of-articulation f-labial Cweak-negative-evidenceO)))

F2 falling
(def rule forinants-M1-falling-large

(declare (salience ?*formant-salience*))
(logical

(instance-of ?token token)
(class ?token stop)
(right-of ?right ?token)I (class ?right vowellsenivowel)
(qualitative-attribute-of q-DURATION-SHO1T-no ?right)
(qualitative-attribute-of q-F2-FALLING-yes ?right)
(qualitative-attribute-of q-F2-AMT-LkRGE-yes ?right))

(not (confirmed place-of-articulation))I (case ((feature-of f-front ?right)
-> ;place: 172 falling into stop, front vowel
(assert (add-to-score -(inccntr) 'token place-of-articulation f-labial estrong-evidencee)
(add-to-score u( inccntr) ?token place-of-art iculat ion f-alveolar eweak-evidencee)

(a tureo -bazckn ?gtkn) aeo-riuainfvla mdu-eaieeiec*)
(ato-o f-bcnr ?gtknpaeo-riuainfv)a udu-eaieeiec*)

=> ;place: 112 falling into stop, back vowel
(assert (add-to-score -( inccntr) ?token place-of-art iculat ion f-labial estrong-evidencee)

(add-to-score a(inccntr) ?token place-of-articulation f-alveolar euedium-negative-evidencee)))

(otheplae:12fligitstpvolunnn
( assert (ad-oscr fal inntr stokvoel nac-of-riuainflba eeimeiece))Ior adt-cr ~uct)?oe lc-fatclto -ailOei-vdnR M

(def rule foruants-MF-falling-medium..
(declare (salience ?Oforut-saliencee))
(logical
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(instance-of ?token token)
(ciass ?token stop)
(right-of ?right ?token)I
(class ?right vowel! semzvowel)
(qualitative-attribute-of q-DtJXATION-SBORT-no ?right)
(qualitative-attribute-of q-F2-FALLING-yes ?right)

(qualitative-attribute-of q-F2-ANT-LARGE-maybe ?right))I
(not (confirmed place-of-articulation))
(case ((feature-of f-front ?right)

=> ; place: RF2 falling into stop, front vowel
(assert (add-to-score a(inccntr) ftoken place-of-articulation f-labial emediuu-evidence-maybe*)I
(add-to-score u(inccutr) ?token place-of-articulation f-alveolar *mediuu-evidentce-maybo*)

(add-to-score -(inccnxtr) ?token place-of-articulation f-velar Cuedium-negat ive-evidence-naybee)))
((feature-of f-back ?right)
=> ; place: RF2 falling into stop, back vowelI
(assert (add-to-score u(inccntr) ?token place-of-articulation f-labial *strong-evidnce-maybee)
(add-to-score =(inccntr) ?token place-of-articulation f-velar eweak-evidence-maybee)
(add-to-score u(inccntr) ?token place-of-articulation f-alveolar emediumnegative-evidence-naybe*)))

(otherwise
a> ; place: 312 falling into stop, vowel unknownI
(assert (add-to-score -(inccntr) ?token place-of-articulation f-labial *medium-evidence-naybes))

(def rule formants-M1-falling-small ..

(declare (salience ?*foruant-saliencee))
(logical

(instance-of ?toka token)
(class token stop)
(right-of ?right 'token)I
(class ?right vowel semivowel)

(qualitative-attribute-of q-DURATION-SHORT-no ?right)
(qualitative-attribute-of q-F2-FhLLIEG-yes ?right)
(qualitative-attribute-of q-F2-LKT-SNILL1-yes ?right))I

(not (confirmed place-of-articulation))
(case ((feature-of f-front ?right)

u> ; place: RF2 falling into stop, front vowel
(assert (add-to-score u(inccntr) ?token place-of-articulation f-labial eweak-evidencee)I
fadd-to-score -(inccntr) 'token place-of-articulation f-alveolar *eediu-evidence*)
(add-to-score u( inccntr) ?token place-of-articulation f-velar sweak-negat ive-evidencee)))

((feature-of f-back ?right)
-> ;place: R12 falling into atop, back vowel
(asert (add-to-score -(inccntr) ?token place-of-articulation f-labial *strong-evidencee)I
(add-to-score u(inccntr) ?token place-of-articulation f-velar eweak-evidence*)
(add-to-score u(inccntr) ?token place-of-articulation f-alveolar eweak-negative-evidencee)

(otherwise
=> ; place: 312 falling into stop, vowel unknownI
(assert (add-to-score *(inccntr) ?tokoen place-of-articulation f-labial eweak-evidencee))))

(defrule foruants-RF-flat ..

(declare (sr-ience ?eforuant-saliencee))I

(instance-of 'token token)
(class ?token stop)
(right-of ?right ?token)I
(class ?right vowelismmivowel)
(qualitative-attribute-of q-DUTLTIO-SHORT-no ?right)
(qulitative-attribute-of q-F2-RISIIG-no ?right)
(qualitative-attribute-of q-F2-FALLINIG-no ?right))

(not (confirmed place-of-articulation))I
(case ((feature-of f-front 'right)

(feature-of f-high ?right)
(not (feature-of f-reduced ?right))
=> ; place: M1 flat, high,front vowelI
(assert (add-to-score o(iaccntr) ?token place-of-articulation f-alveolar oweak-negative-evidence*)
(add-to-score u( inccntr) ?token place-of-art iculat ion f-labial euediuu-xiegative-evidencoO))

170



* Appendix D. Rules

((feature-of f-front ?right)
(not (feature-of f-reduced ?right))
=> ; place: RF2 flat, front vowel
(assert (add-to-score w( inccntr) ?token place-of-articulation f-labial *weak-negat ive-evidence*)
(add-to-score -(inccntr) ?token placa-of-articulation f-alveolar *weak-evidence*)))

((feature-of f-back ?right)
(not (feature-of f-reduced ?right))
=> ; place: RF2 flat, back vowel
(assert (add-to-score (inccntr) ?token place-of-articulation f-labial *weak-evidence*)
(add-to-score -(iniccntr) ?token place-of-articulation f-velar *weak-evidence*)I (add-to-score -(inccntr) ?token place-of-articulation f-alveolar *weak-negat ive-evidenceW)

(otherwise
-> ; place: R12 flat, vowel unknown
(assert (add-to-score -(in~ccntr) ?token place-of-articulat ion f-alveolar eweak-evidence*)))))

F3 rising
(defrule formants-MF-rising

(declare (salience 'eformant-salience*))
(logical

(instance-of ?token token)

(class ?token stop)
(right-of ?right ?token)I (class ?right vowelisenivowel)
(qualitative-attribute-of q-DUUATIaI-SHORT-no ?right)
(qualitative-attribute-of q-F3-RISIUG-yes ?right))

(not (confirmed place-of-articulation))
(split ( => ; place: 113 rising into stopI (assert (add-to-score ( inccutr) ?token place-of-art iculat ion f-labial *medium-negative-evidence*))

((exists (feature-of f-roundlf-retrofler ?right))
=> place: ItF3 rising into stop, vowel round or retroflex
(assert (add-to-score -( inccntr) ?token place-of-art iculat ion f-alveolar emdius-evidenceW))

((feature-of -f--front; ?right)
-) ; place: RF3 rising into stop, front vowel

(assert (add-to-score -(inccntr) ?token place-of-articulation f-velar enedium-evidencee)))

3 F3 falling
(def rule formants-111-falling

(declare (salience 'eforuant-saliencee))
(logical

(instance-of ?token token)
(class ?token stop)
(right-of ?right ?token)
(class ?right vowllsemivowel)
(qualitative-attribute-of q-DURtATIOI-SEORT-no ?right)I (qualitative-attribute-of q-73-FALLING-yes ?right))

(not (confirmed place-of-articulation))
(split ( => ; place: FCF3 falling into stop
(assert (add-to-score o(inccntr) ?token place-of-articulation f-labial *medium-evidence*))I ((feature-of f-retroflex 'right)
-> ; place: R13 falling into stop, retro vowel
(assert (add-to-score -(in~ccntr) ?token place-of-articulation f-alveolar *medium-negative-evidence*))

,coubinod formaflL notion rules

(defrule fornants-right-pinch ..

(declare (salience ?..forinant-saliencee))
(logical

(instance-of ?token token)
(class ?token stop)
(right-of ?right ?token)
(class ?right vowelisesivowel)

(qualitative-attribute-of q-DURATIO-Si[ORT-no ?right)
(qualitative-attribute-of q-F2-F3-PINCH-yes ?right))
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(not (confirmed place-of -articulation))
(case ((feature-of f-front ?right)

(not (feature-of f-round ?right))
u> ; right F2 and F3 pinch
(assert (add-to-score a(inccntr) ?token place-of-articulation f-velar *strong-evidencee))

((feature-of f-round ?right)
=> ; right F2 and F3 pinch, round
(assert (add-to-score -(inccntr) ?token place-of-articulation f-alveolar enedium-evidence*)))

=> (assert (add-to-score -(inccntr) ?token place-of-articulation f-labial *nediun-negative-evidence *)))

(defrule formants-no-right-pinch Il
(declare (salience ?*foruant-salience*))
(logical

(instance-of ?token token)
(class ?token stop)
(right-of ?right ?token)
(class ?right vowelisemivowel)
(qualitative-attribute-of q-DURLTIOI-SNORT-no ?right)
(qualitative-attribute-of q-F2-F3-PIICH-no ?right)
(feature-of f-front ?right)
(not (feature-of f-round ?right)))

(not (confirmed place-of-articulation))
-> ; right F2 and 73 do not pinch

(assert (add-to-score -(inccntr) ?token place-of-articulation f-velar *weak-negative-evidencee)))I

(def rule foruiants-falling-right
(declare (salience ?eforisant-salience*))
(logicalI

(instance-of ?token token)

(class ?token stop)
(right-of ?right ?token)
(class ?right vovelisemivowel)I
(qualitative-attribute-of q-DUR&TION-SHORT-no ?right)
(qualitative-attribute-of q-FORENANTS-ALL-FILLING-yes ?right))

(not (confirmed place-of-articulation))
(case ((feature-of f-front ?right)

(feature-of f-high ?right)I
-> ; formants all falling on the right, high, front vowel
(assert (add-to-score -(inccntr) ?token place-of-articulation f-alveolar emedium-evidencee)
(add-to-score -(in~ccntr) ?token place-of-articulation f-labial euedium-evidencee))

((feature-of f-front ?right)I
-> ; formants afl. falling on the right, front vowel
(assert (add-to-score -(inccntr) ?token place-of-articulation f-alveolar eweak-evidence*)
(add-to-score *(inccntr) ?token place-of-articulation f-labial *medium-evidencee))

(otherwiseI
=> ; formants all falling on the righ;.

(assert (add-to-score u(in~ccntr) ?token place-of-articulation f-labial emedium-evidencee))

(defrule foruants-rising-right I'l
(declare (salience 'eforisant-saliencee))
(logical

(instance-of ?token token)
(class ?token stop)
(right-of ?right ?token)I
(class ?right vowelisemtivowel)
(qualitative-attribute-of q-DURLATIOB-SNORT-no ?right)
(qualitative-attribute-of q-F2-F3-RISING-yes ?right))

(not (confirmed place-of-articulation))I
(case ((feature-of f-front ?right)

-> ; 72 and F3 rising on th. right, front vowel
(assert (add-to-score u( inccntr) ?token place-of-articulation f-velar emedium-evidence*M)

((feature-of f-back ?right)I
=> ; 72 and F3 rising on the right, back vowel

(assert (add-to-score a(iaccntr) ?token place-of-articulation f-alveolar emedium-evidencee)
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((feature-of f-round ?right)
a> ; F2 and F3 rising on the right, round vowel

(assert (add-to-score u(inccntr) ?token place-of-articulation f-alveolar *medium-evidence*)))))

I
I
I
I
I!
I
I
I
I
I
I
I
I
I
I
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;; rules for the aspiration characteristics

(defrule aspiration-F2-h~ole 'I
(declare (salience ?*formant-salienceo))
(logical

(instance-of ?token token)

(instance-of ?aspiration aspiration)

(interval-of ?aspiration ?token)
(right-of ?right ?token)

(class ?right vowellsemivowel)I

(qualitative-attribute-of q-ASPIRATED-yes ?aspiration))
(not (confirmed place-of-articulation))

;only used to decide between front velar and front alveolarI
(exists (add-to-score ?uaiqueness-numberl ?token place-of-articulation f-veiar ?amtlk:() (oval 'anti) 0))
(exists (add-to-score ?uniqueness-nuniber2 ?token place-of-articulation f-alveolar ?azt2k:(> (eval ?amt2) 0))
(split ((qualitative-attribute-of q-F2-EIOLE-yes ?aspirat ion)
=> ; F2 hole in aspiration
(assert (add-to-score -( inccntr) ?token place-of-art iculat ion f-velar emediuz-evidence*)))I
((qualitative-attribute-of q-AT-F2-yes ?aspirat ion)
-> ; aspiration at F2
(assert (add-to-score -( inccntr) ?token place-of-art iculat ion f-alveolar *nodium-evidence*M))

(defrule aspiration-labial-tail "
(declare (salience ?eformant-salience))
(logical

(instance-of ?token token)I

(instance-of ?aspiration aspiration)
(interval-of ?aspiration ?token)
(right-of ?right ?token)I
(class ?right vowellseinivowel)
(qualitative-attribute-of q-ASPIRATED-yes ?aspiration)
(qualitative-attribute-of q-TAIL-yes ?aspiration))

(not (confirmed place-of-articulation))
(exists (add-to-score ?uniqueness-number ?token place-of-articulation f-labial 'amtk:(> (oval ?ant) 0))M
-> ; labial tail in aspiration
(assert (add-to-score -( inccntr) ?token place-of-art iculat ion f-labial *uedium-evidence*))

(def rule aspiration-AT-F2-only ..
(declare (salience ?e-forinant-salience*))
(logical

(instance-of 'token token)
(class ?token stop)I
(instance-of ?aspiration aspiration)

(interval-of ?aspiration ?token)
(right-of ?right ?token)
(class ?right vowellseinivowel)I
(qualitative-attribute-of q-ASPIRATED-yes ?aspirat ion)
(qualitative-attribute-of q-AT-F2-OILY-yes ?aspiration))

(not (confirmed place-of-articulation))
(exists (add-to-score ?uniqueness-number 'token place-of-articulation f-labial ?amtk:(> (oval ?amt) 0))
(split (=> ; aspiration at F2 onlyI

(assert (add-to-score a(intccntr) ?token place-of-articulation f-labial eMedium-evidencee))
((feature-of f-back ?right)
-> ; aspiration at F2 only, back vowel

(assert (add-to-score a (inccntr) ?token place-of-art iculat ion f-velar emedium-evidencee))
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after the user specifies the identity of the fricative,
make it an instance of that fricative

(defrule fricative-from-identity "'

(declare (salience ?eplace-rule-saliencee))

(logical
(instance-of ?token token)

(instance-of ?token fricative)

(asked-identity ?token ?id)

(value-of ?fricative fricative)

(explicit (identity ?fricative ?id)))

=> (assert (instance-of ?token ?fricative)))

give an instance of a fricative all the features of its fricative class

(defrule fricative-features I'll

(declare (salience ?econtext-salience*))

(logical
(instance-of ?token token)(instance-of ?token fricative)
(instance-of ?token ?fricative)

(value-of ?fricative fricative)

(explicit (feature-of ?feature ?fricative)))

.) (assert (feature-of ?feature ?token)))

; ;rules to try and identify the fricative as an s or a z
(defrule fricative-striations Ie

(declare (salience ?context-salience))

(logical

(instance-of ?token stop)
(instance-of ?release release)

(interval-of ?release ?token)

(left-of ?left ?token)

(class ?left fricative)
(qualitative-attribute-of q-STRIITIOTS-yes ?left))

u> ; fricative has striations, so is likely to be a z

(assert (property-of s-not-cluster ?token)))

(defrule fricative-vbar ..
(declare (salience ?*context-salience*))

(logical
(instance-of ?token stop)
(instance-of ?release release)

(interval-of ?release ?token)

(left-of ?left ?token)

(class ?left fricative)
(qualitative-attribute-of q-VBAI-yes ?left))

=> ; fricative has a VBAR, so is likely to be a z

(assert (property-of s-not-cluster ?token)"

,;; if preceded by fricative, and VOT is mid and incomplete closure, then

;;; the voicing of the stop and the fricative are probably the same(defrale fricative-stop-voicing-agree "rules to deduce the voicing characteristic"

(declare (salience ?evoicing-rule-saliencee))
(logical

(instance-of ?token stop)
(instance-of ?closure closure)
(interval-of ?closure ?token)
(left-of ?left ?token)

(class ?left fricative)
(voicing-characteristic ?left ?vc)

(qnalitative-attribute-of q-INCONPLETE-CLOSURE-yes ?closure))

(not (confirmed voicing-characteristic))
=> ; incomplete closure -- > voicing agrees
(assert (add-to-score *(inccntr) ?token voicing-characteristic ?vc emedium-evidencee)))
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;;; the context rules for formants are no longer applicable,

a; and are inhibited because the left context of the stop is no longer

,;; a vowel

(defrule s-burst-not-virible ....

(declare (salience ?*place-rule-salience*))

(logical
(instance-of ?release release)

(interval-of ?release ?token)

(left-of ?left ?token)

(class ?left fricative)

(property-of s-cluster ?token)

(qualitative-attribute-of q-BURST-VISIBLE-no ?release))
(not (confirmed place-of-articulation))

a> ; fricative place: burst not-visible

(assert (add-to-score -(inccntr) ?token place-of-articulation f-labial *weak-evidence*)))

;;; place rules for fricative-clusters: cues in the fricative --- do not require cluster

(dafrule fricative-spectral-tail "'I
(declare (salience ?eplace-rule-salience*))

(logical
(instance-of ?token token)

(instance-of ?token stop)

(left-of ?left ?token)

(class ?left fricative))

(not (confirmed place-of-articulation))

(exists (add-to-score ?uniqueness-number ?token place-of-articulation f-labial ?amt&:(> (eval ?amt) 0)))
(qualitative-attribute-of q-CUTOFF-FALLIIG-yes ?left)
-> ; fricative place: spectral-tail

(assert (add-to-score -(inccntr) ?token place-of-articulation f-labial *medi-m--evidence*)))

(defrule fricative-F2-blob ""
(declare (salience ?*place-rule-saliencee))

(logice
(inst. ce-of ?token token)

(instance-of ?token stop)

(left-of ?left ?token)
(class ?left fricative))

(not (confirmed place-of-articulation))

(exists (add-to-score ?uniqueness-number ?token place-of-articulation f-velar ?amt&:(> (eval ?amt) 0)))
(qualitative-attribute-of q-F2-BLOB-yes ?left)
=> ; fricative place: F2-blob

(assert (add-to-score -(inccntr) ?token place-of-articulation f-velar *medium-evidence*)))

(defrule fricative-incomplete-closure ""

(declare (salience ?eplace-rule-salience*))

(logical
(instance-of ?token token)
(instance-of ?token stop)

(instance-of ?closure closure)
(interval-of ?closure ?token)

(left-of ?left ?token)

(class "left fricative))

(not (confirmed place-of-articulation))

(exists (add-to-score ?uniqueness-number ?token place-of-articulation f-alveolar ?amtk:(> (oval ?amt) 0)))

(qualitative-attribute-of q-INCOMPLETE-CLOSURE-yes ?closure)
=> ; fricative place: incomplete-closure

(assert (add-to-score u(inccntr) ?token placed-of-articulation f-alveolar *medium-evidence)))
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;;; vowel rules

a ter the user specifies the identity of the vowel, make it an instance

of that vowel
(defr rle vowel-from-identity

(declare (salience ?eplace-rule-salience*))

(logical
(instance-of ?token token)

(instance-of ?tokeT vowel)
(asked-identity ?token 'id)
(value-of ?vowel vowel)

(explicit (identity ?vowel ?id)))
=> (assert (instance-of ?token ?vowel)))

give an instance of a vowel all the features of its vowel class

(defrule vowel-features ....

(declare (salience ?econzext-saliencee))
(logical
(instance-of ?token token)

(instance-of ?token vowel)
(instance-of ?token ?vowel)

(value-of ?vowel ,owel)
(explicit (feature-of ?feature ?vowel)))

a, (assert (featurc-of ?feature ?token)))

I;; features for the diphthongs depend on which side of stop

(defrule vowel-features-diphthong-left ....

(declare (salience ?*€ontext-salience*))

(logical

(instance-of ?token token)
(instance-of ?token vowel)
(right-of ?right ?token)

(instance-of ?right stop)

(iunstance-of ?token vowel-ay lvowel-cy))

=> (assert (feature-of f-front ?token)))

(defrule vowel-features-diphthong-right ...

(declare (salience ?econtext-sliencee))

(logical

(instance-of ?token token)

(instance-of ?token vowel)

(left-of ?left ?token)

(instance-of ?left stop)

(split ((instance-of ?token vowel-ay)

-> (assert (feature-of f-back ?token)))
((instance-of ?token vowel-cy)

= (assert (feature-of f-back ?token)

(feature;of f-round ?token))))))

;; semivowel features

(defrmle semivowel-from-identity

(declare (salience ?*place-rule-salience*))

(loiical

(instance-of ?token token)~(instance-of ?token semivowel)
(asked-identity ?token ?id)
(value-of ?semivowel semivowel)

(explicit (identity ?semivowel ?id)))

=> (assert (instance-of ?token ?semivowel)))

(defrule semivowel-features I'll

(declare (salience ?*context-salience*))

(logical
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(instance-of ?token token)

(instance-of ?token seivowel)
(instance-of ?token ?semivogel)
(value-of ?semivowel semivowel)

(explicit (feature-of ?feature ?semivowel)))

) (assert (feature-of ?feature ?token)))
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